Abstract

Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of this material; we discuss possible solutions for this. Furthermore, the use of broad-band cholesteric filters to prevent escape of luminescent radiation from this phosphor is investigated both experimentally and using simulations. Simulations are also used to predict the ultimate performance of luminescent concentrators.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
    [CrossRef]
  2. J. M. Castro, D. Zhang, B. Myer, and R. K. Kostuk, “Energy collection efficiency of holographic planar solar concentrators,” Appl. Opt.49(5), 858–870 (2010).
    [CrossRef] [PubMed]
  3. R. Winston, J. C. Minano, and P. Benitez, Nonimaging optics (Elsevier Academic Press, 2005).
  4. T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express19(16), 15127–15142 (2011).
    [CrossRef] [PubMed]
  5. D. K. G. de Boer, “Luminescent and non-luminescent solar concentrators: challenges and progress,” Renewable Energy and the Environment 2011 (Optical Society of America, Washington, DC, 2011), SRThB6.
  6. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976).
    [CrossRef] [PubMed]
  7. A. Goetzberger and W. Greube, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977).
    [CrossRef]
  8. E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am.70(11), 1362–1363 (1980).
    [CrossRef]
  9. U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
    [CrossRef]
  10. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
    [CrossRef]
  11. M. G. Debije, M. P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
    [CrossRef] [PubMed]
  12. D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
    [CrossRef]
  13. D. K. G. de Boer, “Optimizing wavelength-selective filters for luminescent solar concentrators,” Proc. SPIE7725, 77250Q, 77250Q-9 (2010).
    [CrossRef]
  14. L. R. Wilson, B. C. Rowan, N. Robertson, O. Moudam, A. C. Jones, and B. S. Richards, “Characterization and reduction of reabsorption losses in luminescent solar concentrators,” Appl. Opt.49(9), 1651–1661 (2010).
    [CrossRef] [PubMed]
  15. K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
    [CrossRef]
  16. R. Reisfeld and Y. Kalisky, “Improved planar solar converter based on uranyl neodymium and holmium glasses,” Nature283(5744), 281–282 (1980).
    [CrossRef]
  17. J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
    [CrossRef]
  18. C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).
  19. C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
    [CrossRef]
  20. C. Ronda, Luminescence: From Theory to Applications (Wiley, 2008).
  21. R. Mehra, “Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,” Proc. Indiana Acad. Sci. (Chem. Sci.)115(2), 147–154 (2003).
    [CrossRef]
  22. Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
    [CrossRef]
  23. Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
    [CrossRef]
  24. Titanium dioxide P25 (Degussa, Evonik Industries).
  25. Y. Paz, “Application of TiO2 photocatalysis for air treatment: Patents’ overview,” Appl. Catal. B99(3-4), 448–460 (2010).
    [CrossRef]
  26. Narec Solar, http://narecsolar.com/
  27. L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).
  28. M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
    [CrossRef]
  29. D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
    [CrossRef]
  30. N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
    [CrossRef]
  31. D.K.G. de Boer, D.J. Broer, C.R. Ronda, and H.J. Cornelissen, “Luminescent solar concentrator,” WO 2011/064691 A2.
  32. http://www.opticalres.com/lt/ltprodds_f.html
  33. S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
    [CrossRef] [PubMed]

2012 (2)

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

2011 (2)

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express19(16), 15127–15142 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (3)

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

2007 (1)

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

2005 (2)

U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

2003 (2)

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

R. Mehra, “Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,” Proc. Indiana Acad. Sci. (Chem. Sci.)115(2), 147–154 (2003).
[CrossRef]

2001 (1)

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

2000 (1)

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

1999 (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

1995 (1)

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

1990 (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

1980 (2)

E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am.70(11), 1362–1363 (1980).
[CrossRef]

R. Reisfeld and Y. Kalisky, “Improved planar solar converter based on uranyl neodymium and holmium glasses,” Nature283(5744), 281–282 (1980).
[CrossRef]

1977 (1)

A. Goetzberger and W. Greube, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977).
[CrossRef]

1976 (1)

Arrue, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Barnham, K.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Bastiaansen, C. W. M.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express19(16), 15127–15142 (2011).
[CrossRef] [PubMed]

M. G. Debije, M. P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Belokrys, S. P.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Bläsi, B.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Bos, A. J. J.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Broer, D. J.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

M. G. Debije, M. P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Castro, J. M.

Chang, S.-J.

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

Cho, S. H.

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

Ciou, C.-J.

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

Cornelissen, H. J.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

de Boer, D. K. G.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

T. M. de Jong, D. K. G. de Boer, and C. W. M. Bastiaansen, “Surface-relief and polarization gratings for solar concentrators,” Opt. Express19(16), 15127–15142 (2011).
[CrossRef] [PubMed]

D. K. G. de Boer, “Optimizing wavelength-selective filters for luminescent solar concentrators,” Proc. SPIE7725, 77250Q, 77250Q-9 (2010).
[CrossRef]

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

de Brouwer, S.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

de Jong, T. M.

Debije, M. G.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

M. G. Debije, M. P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Desmet, L.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

Doorenbos, P.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Einsele, F.

U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Flaim, T.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Fowler, S.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Giesbers, M. P.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Glaeser, G. C. C.

U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Goetzberger, A.

A. Goetzberger and W. Greube, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977).
[CrossRef]

Goldschmidt, J. C.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Gombert, A.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Greube, W.

A. Goetzberger and W. Greube, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977).
[CrossRef]

Hassard, J.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Hermans, K.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Holmes, D.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Huck, N. P. M.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Jones, A. C.

Jung, Y. S.

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

Kaiser, A.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Kalisky, Y.

R. Reisfeld and Y. Kalisky, “Improved planar solar converter based on uranyl neodymium and holmium glasses,” Nature283(5744), 281–282 (1980).
[CrossRef]

Kastelijn, M. J.

Keur, W.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Korol, A. S.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Kostuk, R. K.

Krikunov, S. A.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Kulshreshtha, C.

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

Lambe, J.

Lee, J.-T.

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

Li, C.-C.

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

Liao, W.-S.

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

Lin, C.-W.

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

Löper, P.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Lub, J.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Marques, J. L.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Mehra, R.

R. Mehra, “Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,” Proc. Indiana Acad. Sci. (Chem. Sci.)115(2), 147–154 (2003).
[CrossRef]

Meijerink, A.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Mercado, R.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Mol, G. N.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Moudam, O.

Myer, B.

O'Brien, P.

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

Osadchuk, V. V.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Oseledchik, Y. S.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Paz, Y.

Y. Paz, “Application of TiO2 photocatalysis for air treatment: Patents’ overview,” Appl. Catal. B99(3-4), 448–460 (2010).
[CrossRef]

Peters, M.

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

Pisarevskiy, A. I.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Planje, C.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Prosvirnin, A. L.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Ras, A. J. M.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

Rau, U.

U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

Reisfeld, R.

R. Reisfeld and Y. Kalisky, “Improved planar solar converter based on uranyl neodymium and holmium glasses,” Nature283(5744), 281–282 (1980).
[CrossRef]

Richards, B. S.

Ries, H.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

Robertson, N.

Ronda, C. R.

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Rowan, B. C.

Selevich, A. F.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Smestad, G.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

Sohn, K.-S.

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

Starshenko, V. V.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Staupe, I.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Svitanko, N. V.

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Thirouard, A.

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Tsoi, S.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

Van, M. P.

van der Blom, R. H. L.

van Haaren, J. A. M. M.

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Verbunt, P. P. C.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

M. G. Debije, M. P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010).
[CrossRef] [PubMed]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Wang, Y.

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

Weber, W. H.

Wilson, L. R.

Winston, R.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

Yablonovitch, E.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am.70(11), 1362–1363 (1980).
[CrossRef]

Zahn, H.

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

Zhang, D.

Zubia, J.

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Adv. Funct. Mater. (1)

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through use of dye molecules aligned in a planar manner by liquid crystals,” Adv. Funct. Mater.19(17), 2714–2719 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999).
[CrossRef]

Appl. Catal. B (1)

Y. Paz, “Application of TiO2 photocatalysis for air treatment: Patents’ overview,” Appl. Catal. B99(3-4), 448–460 (2010).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (Berl.) (1)

A. Goetzberger and W. Greube, “Solar-energy conversion with fluorescent collectors,” Appl. Phys. (Berl.)14(2), 123–139 (1977).
[CrossRef]

Appl. Phys. Lett. (3)

U. Rau, F. Einsele, and G. C. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005).
[CrossRef]

K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000).
[CrossRef]

D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009).
[CrossRef]

J. Colloid Interface Sci. (1)

S.-J. Chang, W.-S. Liao, C.-J. Ciou, J.-T. Lee, and C.-C. Li, “An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability,” J. Colloid Interface Sci.329(2), 300–305 (2009).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

C. Kulshreshtha, S. H. Cho, Y. S. Jung, and K.-S. Sohn, “Deep red color emission in an Sm2+-doped SrB4O7 phosphor,” J. Electrochem. Soc.154(3), J86–J90 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003).
[CrossRef]

Nature (1)

R. Reisfeld and Y. Kalisky, “Improved planar solar converter based on uranyl neodymium and holmium glasses,” Nature283(5744), 281–282 (1980).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Zubia and J. Arrue, “Plastic optical fibers: An introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001).
[CrossRef]

Opt. Mater. (1)

Y. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead tetraborates,” Opt. Mater.4(6), 669–674 (1995).
[CrossRef]

Proc. Indiana Acad. Sci. (Chem. Sci.) (1)

R. Mehra, “Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with n-alkanols at different temperatures,” Proc. Indiana Acad. Sci. (Chem. Sci.)115(2), 147–154 (2003).
[CrossRef]

Proc. SPIE (2)

Y. Wang, T. Flaim, R. Mercado, S. Fowler, D. Holmes, and C. Planje, “Hybrid high refractive index polymer coatings,” Proc. SPIE5724, 42–49 (2005).
[CrossRef]

D. K. G. de Boer, “Optimizing wavelength-selective filters for luminescent solar concentrators,” Proc. SPIE7725, 77250Q, 77250Q-9 (2010).
[CrossRef]

Sol. Energy Mater. (1)

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990).
[CrossRef]

Other (9)

D. K. G. de Boer, “Luminescent and non-luminescent solar concentrators: challenges and progress,” Renewable Energy and the Environment 2011 (Optical Society of America, Washington, DC, 2011), SRThB6.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging optics (Elsevier Academic Press, 2005).

C. R. Ronda, S. de Brouwer, W. Keur, D. K. G. de Boer, A. Meijerink, A. J. J. Bos, and P. Doorenbos, “Luminescence of Sm2+ in strontium borates and aluminosilicates,” to be published (2012).

Titanium dioxide P25 (Degussa, Evonik Industries).

C. Ronda, Luminescence: From Theory to Applications (Wiley, 2008).

Narec Solar, http://narecsolar.com/

L. Desmet, D. K. G. de Boer, A. J. M. Ras, H. Zahn, M. G. Debije, S. Tsoi, P. P. C. Verbunt, C. W. M. Bastiaansen, and D. J. Broer, “Monocrystalline silicon luminescent solar concentrator with 4.2% conversion efficiency,” to be published (2012).

D.K.G. de Boer, D.J. Broer, C.R. Ronda, and H.J. Cornelissen, “Luminescent solar concentrator,” WO 2011/064691 A2.

http://www.opticalres.com/lt/ltprodds_f.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) In a scattering concentrator, light initially in the light guide can escape by scattering. (b) In a luminescent concentrator, large part of the luminescent light stays inside the light guide. (c) If the luminescent material is not perfect, part of the luminescent light can escape. (d) A suitable wavelength-selective filter prevents escape of the luminescent light.

Fig. 2
Fig. 2

(a) Excitation (at emission wavelength 685 nm) and emission spectrum (at excitation wavelength 500 nm) of SrB4O7:5%Sm2+,5%Eu2+. (b) Energy levels and transitions for Sm2+.

Fig. 3
Fig. 3

(a) Refractive-index dispersion for SrB4O7 (solid line), high-index polyimide (dashed) and 29 volume% TiO2 nanoparticles in organic binder (dotted). (b). Measured (triangles) and calculated [21] (solid line) refractive index at 685 nm for TiO2 nanoparticles of various volume% dispersed in organic binder. Dashed line: index of SrB4O7.

Fig. 4
Fig. 4

Transmission spectra for various incident angles (in glass) of a right-handed CLC stacked on top of a left-handed CLC. The pitch varies linearly from 437 nm to 520 nm in the right-handed material and from 429 nm to 521 nm in the left-handed material, respectively. Dashed lines indicate the experiment, solid lines indicate simulated results.

Fig. 5
Fig. 5

Calculated reflectivity as a function of wavelength and (internal) angle of incidence for (a) no dispersion and (b) special dispersion. The dispersion of ne (solid line) and no (dashed) are shown in the insets.

Fig. 6
Fig. 6

Collection probability and concentration vs. relative reabsorption in an LSC. From top to bottom: with filter with special dispersion and 100% reflectivity, with filter with normal dispersion and 100% reflectivity, with filter with special dispersion and 90% reflectivity (dashed), with filter with normal dispersion and 90% reflectivity (dashed), without filter. (a) QE = 100%, (b) QE = 90%.

Fig. 7
Fig. 7

Collection probability and concentration vs. difference in refractive index between scattering phosphor particles and binder. From top to bottom: with filter with special dispersion and 100% reflectivity, with filter with normal dispersion and 100% reflectivity, with filter with special dispersion and 90% reflectivity (dashed), with filter with normal dispersion and 90% reflectivity (dashed), without filter, only scattering particles (dotted).

Fig. 8
Fig. 8

(From top to bottom:) concentration, relative performance and collection probability vs. geometric gain in an LSC, without (solid line) and with (dashed) filter, for (a) matching phosphor (nbinder = 1.7) and (b) non-matching phosphor (nbinder = 1.68).

Metrics