Abstract

One-pot alkoxylation of benzene with alcohols occurs under photoirradiation of 3-cyano-1-methylquinolinium ion in an oxygen-saturated acetonitrile solution containing benzene and alcohols. The photocatalytic reaction mechanism was clarified by nanosecond laser flash photolysis. The photocataytic alkoxylation of benzene is initiated by photoinduced electron transfer from benzene to the singlet excited state of 3-cyano-1-methylquinolinium ion, followed by the nucleophilic addition of alcohols to benzene radical cation. In the case of photoethoxylation, the optimal product and quantum yields of ethoxybenzene were 20% and 10%, respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D. Garbe, and W. Paulus, Phenol derivatives in Ullmann's encyclopedia of industrial chemistry (Wiley-VCH, Weinheim 2002).
  2. J. J. Li and D. S. Johnson, Modern Drug Synthesis (Wiley, Hoboken, 2010).
  3. S. Enthaler and A. Company, “Palladium-catalysed hydroxylation and alkoxylation,” Chem. Soc. Rev.40(10), 4912–4924 (2011).
    [CrossRef] [PubMed]
  4. G. S. Hiers and F. D. Hager, “Anisole,” Org. Syn. Coll.1, 58 (1941).
  5. J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
    [CrossRef]
  6. R. Molinari and T. Poerio, “Remarks on studies for direct production of phenol in conventional and membrane reactors,” Asia-Pac. J. Chem. Eng.5(1), 191–206 (2010).
  7. T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3,” J. Am. Chem. Soc.110(21), 7238–7239 (1988).
    [CrossRef]
  8. T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia,” J. Phys. Chem.94(18), 6973–6977 (1990).
    [CrossRef]
  9. T. Maeyama and N. Mikami, “Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water,” J. Phys. Chem.95(19), 7197–7204 (1991).
    [CrossRef]
  10. H. Tachikawa, “Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study,” J. Phys. Chem. A110(1), 153–159 (2006).
    [CrossRef] [PubMed]
  11. D. Thölmann and H.-F. Grützmacher, “Aromatic substitution of halobenzenes in the gas phase: A kinetic study by FT-ICR spectrometry,” Chem. Phys. Lett.163(2-3), 225–229 (1989).
    [CrossRef]
  12. D. Thölmann and H.-F. Grützmacher, “Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution,” J. Am. Chem. Soc.113(9), 3281–3287 (1991).
    [CrossRef]
  13. G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
    [CrossRef] [PubMed]
  14. G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
    [CrossRef] [PubMed]
  15. E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
    [CrossRef] [PubMed]
  16. K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
    [CrossRef] [PubMed]
  17. R. D. Mair and A. J. Graupner, “Determination of organic peroxides by iodine liberation procedures,” Anal. Chem.36(1), 194–204 (1964).
    [CrossRef]
  18. S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
    [CrossRef]
  19. S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).
  20. H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
    [CrossRef] [PubMed]
  21. H. Togo and M. Katohgi, “Synthetic uses of organohypervalent iodine compounds through radical pathways,” Synlett2001(5), 565–581 (2001).
  22. S. Furuyama and H. Togo, “An efficient preparation of chroman derivatives from 3-aryl-1-propanols and related compounds with 1,3-diiodo-5,5-dimethylhydantoin under irradiation conditions,” Synlett2010(15), 2325–2329 (2010).
    [CrossRef]

2011 (2)

S. Enthaler and A. Company, “Palladium-catalysed hydroxylation and alkoxylation,” Chem. Soc. Rev.40(10), 4912–4924 (2011).
[CrossRef] [PubMed]

K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
[CrossRef] [PubMed]

2010 (3)

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

R. Molinari and T. Poerio, “Remarks on studies for direct production of phenol in conventional and membrane reactors,” Asia-Pac. J. Chem. Eng.5(1), 191–206 (2010).

S. Furuyama and H. Togo, “An efficient preparation of chroman derivatives from 3-aryl-1-propanols and related compounds with 1,3-diiodo-5,5-dimethylhydantoin under irradiation conditions,” Synlett2010(15), 2325–2329 (2010).
[CrossRef]

2009 (1)

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

2008 (1)

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

2006 (2)

H. Tachikawa, “Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study,” J. Phys. Chem. A110(1), 153–159 (2006).
[CrossRef] [PubMed]

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

2001 (1)

H. Togo and M. Katohgi, “Synthetic uses of organohypervalent iodine compounds through radical pathways,” Synlett2001(5), 565–581 (2001).

1991 (2)

T. Maeyama and N. Mikami, “Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water,” J. Phys. Chem.95(19), 7197–7204 (1991).
[CrossRef]

D. Thölmann and H.-F. Grützmacher, “Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution,” J. Am. Chem. Soc.113(9), 3281–3287 (1991).
[CrossRef]

1990 (1)

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia,” J. Phys. Chem.94(18), 6973–6977 (1990).
[CrossRef]

1989 (2)

D. Thölmann and H.-F. Grützmacher, “Aromatic substitution of halobenzenes in the gas phase: A kinetic study by FT-ICR spectrometry,” Chem. Phys. Lett.163(2-3), 225–229 (1989).
[CrossRef]

S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).

1988 (1)

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3,” J. Am. Chem. Soc.110(21), 7238–7239 (1988).
[CrossRef]

1985 (1)

S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
[CrossRef]

1979 (1)

J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
[CrossRef]

1964 (1)

R. D. Mair and A. J. Graupner, “Determination of organic peroxides by iodine liberation procedures,” Anal. Chem.36(1), 194–204 (1964).
[CrossRef]

1941 (1)

G. S. Hiers and F. D. Hager, “Anisole,” Org. Syn. Coll.1, 58 (1941).

Baciocchi, E.

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

Bouchoux, G.

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

Clark, J. H.

J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
[CrossRef]

Company, A.

S. Enthaler and A. Company, “Palladium-catalysed hydroxylation and alkoxylation,” Chem. Soc. Rev.40(10), 4912–4924 (2011).
[CrossRef] [PubMed]

De Winter, J.

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

Del Giacco, T.

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

Enthaler, S.

S. Enthaler and A. Company, “Palladium-catalysed hydroxylation and alkoxylation,” Chem. Soc. Rev.40(10), 4912–4924 (2011).
[CrossRef] [PubMed]

Flammang, R.

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

Fukuzumi, S.

K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
[CrossRef] [PubMed]

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).

S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
[CrossRef]

Furuyama, S.

S. Furuyama and H. Togo, “An efficient preparation of chroman derivatives from 3-aryl-1-propanols and related compounds with 1,3-diiodo-5,5-dimethylhydantoin under irradiation conditions,” Synlett2010(15), 2325–2329 (2010).
[CrossRef]

Gerbaux, P.

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

Graupner, A. J.

R. D. Mair and A. J. Graupner, “Determination of organic peroxides by iodine liberation procedures,” Anal. Chem.36(1), 194–204 (1964).
[CrossRef]

Grützmacher, H.-F.

D. Thölmann and H.-F. Grützmacher, “Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution,” J. Am. Chem. Soc.113(9), 3281–3287 (1991).
[CrossRef]

D. Thölmann and H.-F. Grützmacher, “Aromatic substitution of halobenzenes in the gas phase: A kinetic study by FT-ICR spectrometry,” Chem. Phys. Lett.163(2-3), 225–229 (1989).
[CrossRef]

Hager, F. D.

G. S. Hiers and F. D. Hager, “Anisole,” Org. Syn. Coll.1, 58 (1941).

Hiers, G. S.

G. S. Hiers and F. D. Hager, “Anisole,” Org. Syn. Coll.1, 58 (1941).

Ishikawa, M.

S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).

Katohgi, M.

H. Togo and M. Katohgi, “Synthetic uses of organohypervalent iodine compounds through radical pathways,” Synlett2001(5), 565–581 (2001).

Kitaguchi, H.

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

Kobayashi, T.

K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
[CrossRef] [PubMed]

Kuroda, S.

S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
[CrossRef]

Lanzalunga, O.

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

Maeyama, T.

T. Maeyama and N. Mikami, “Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water,” J. Phys. Chem.95(19), 7197–7204 (1991).
[CrossRef]

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia,” J. Phys. Chem.94(18), 6973–6977 (1990).
[CrossRef]

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3,” J. Am. Chem. Soc.110(21), 7238–7239 (1988).
[CrossRef]

Mair, R. D.

R. D. Mair and A. J. Graupner, “Determination of organic peroxides by iodine liberation procedures,” Anal. Chem.36(1), 194–204 (1964).
[CrossRef]

Mencarelli, P.

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

Mikami, N.

T. Maeyama and N. Mikami, “Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water,” J. Phys. Chem.95(19), 7197–7204 (1991).
[CrossRef]

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia,” J. Phys. Chem.94(18), 6973–6977 (1990).
[CrossRef]

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3,” J. Am. Chem. Soc.110(21), 7238–7239 (1988).
[CrossRef]

Miller, J. M.

J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
[CrossRef]

Molinari, R.

R. Molinari and T. Poerio, “Remarks on studies for direct production of phenol in conventional and membrane reactors,” Asia-Pac. J. Chem. Eng.5(1), 191–206 (2010).

Ogo, S.

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

Ohkubo, K.

K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
[CrossRef] [PubMed]

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

Poerio, T.

R. Molinari and T. Poerio, “Remarks on studies for direct production of phenol in conventional and membrane reactors,” Asia-Pac. J. Chem. Eng.5(1), 191–206 (2010).

Procacci, B.

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

So, K. H.

J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
[CrossRef]

Tachikawa, H.

H. Tachikawa, “Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study,” J. Phys. Chem. A110(1), 153–159 (2006).
[CrossRef] [PubMed]

Tanaka, T.

S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).

S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
[CrossRef]

Thölmann, D.

D. Thölmann and H.-F. Grützmacher, “Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution,” J. Am. Chem. Soc.113(9), 3281–3287 (1991).
[CrossRef]

D. Thölmann and H.-F. Grützmacher, “Aromatic substitution of halobenzenes in the gas phase: A kinetic study by FT-ICR spectrometry,” Chem. Phys. Lett.163(2-3), 225–229 (1989).
[CrossRef]

Togo, H.

S. Furuyama and H. Togo, “An efficient preparation of chroman derivatives from 3-aryl-1-propanols and related compounds with 1,3-diiodo-5,5-dimethylhydantoin under irradiation conditions,” Synlett2010(15), 2325–2329 (2010).
[CrossRef]

H. Togo and M. Katohgi, “Synthetic uses of organohypervalent iodine compounds through radical pathways,” Synlett2001(5), 565–581 (2001).

Anal. Chem. (1)

R. D. Mair and A. J. Graupner, “Determination of organic peroxides by iodine liberation procedures,” Anal. Chem.36(1), 194–204 (1964).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

K. Ohkubo, T. Kobayashi, and S. Fukuzumi, “Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts,” Angew. Chem. Int. Ed. Engl.50(37), 8652–8655 (2011).
[CrossRef] [PubMed]

Asia-Pac. J. Chem. Eng. (1)

R. Molinari and T. Poerio, “Remarks on studies for direct production of phenol in conventional and membrane reactors,” Asia-Pac. J. Chem. Eng.5(1), 191–206 (2010).

Can. J. Chem. (1)

J. M. Miller, K. H. So, and J. H. Clark, “Fluoride ion promoted synthesis of alkyl phenyl ethers,” Can. J. Chem.57(14), 1887–1889 (1979).
[CrossRef]

Chem. Phys. Lett. (1)

D. Thölmann and H.-F. Grützmacher, “Aromatic substitution of halobenzenes in the gas phase: A kinetic study by FT-ICR spectrometry,” Chem. Phys. Lett.163(2-3), 225–229 (1989).
[CrossRef]

Chem. Soc. Rev. (1)

S. Enthaler and A. Company, “Palladium-catalysed hydroxylation and alkoxylation,” Chem. Soc. Rev.40(10), 4912–4924 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (3)

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex: generation of C6H5NH3+ from C6H5Cl-NH3,” J. Am. Chem. Soc.110(21), 7238–7239 (1988).
[CrossRef]

D. Thölmann and H.-F. Grützmacher, “Reactions of dihalobenzene radical cations with ammonia in the gas phase. Reactivity pattern for nucleophilic aromatic substitution,” J. Am. Chem. Soc.113(9), 3281–3287 (1991).
[CrossRef]

S. Fukuzumi, S. Kuroda, and T. Tanaka, “Flavin analogue-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light,” J. Am. Chem. Soc.107(11), 3020–3027 (1985).
[CrossRef]

J. Chem. Soc. Perkin Trans. (1)

S. Fukuzumi, M. Ishikawa, and T. Tanaka, “Mechanisms of photo-oxidation of NADH model compounds by oxygen,” J. Chem. Soc. Perkin Trans.2(8), 1037–1045 (1989).

J. Org. Chem. (1)

E. Baciocchi, T. Del Giacco, O. Lanzalunga, P. Mencarelli, and B. Procacci, “Photosensitized oxidation of alkyl phenyl sulfoxides. C-S bond cleavage in alkyl phenyl sulfoxide radical cations,” J. Org. Chem.73(15), 5675–5682 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. (2)

T. Maeyama and N. Mikami, “Nucleophilic substitution within the photoionized van der Waals complex chlorobenzene-ammonia,” J. Phys. Chem.94(18), 6973–6977 (1990).
[CrossRef]

T. Maeyama and N. Mikami, “Intracluster ion molecule reactions within the photoionized van der Waals complexes of fluorobenzene with ammonia and with water,” J. Phys. Chem.95(19), 7197–7204 (1991).
[CrossRef]

J. Phys. Chem. A (4)

H. Tachikawa, “Intramolecular SN2 reaction caused by photoionization of benzene chloride-NH3 complex: direct ab initio molecular dynamics study,” J. Phys. Chem. A110(1), 153–159 (2006).
[CrossRef] [PubMed]

H. Kitaguchi, K. Ohkubo, S. Ogo, and S. Fukuzumi, “Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases,” J. Phys. Chem. A110(5), 1718–1725 (2006).
[CrossRef] [PubMed]

G. Bouchoux, R. Flammang, J. De Winter, and P. Gerbaux, “Reactions of ionized methyl benzoate with methyl isocyanide in the gas phase: nucleophilic aromatic substitutions vs hydrogen migrations,” J. Phys. Chem. A113(41), 11075–11083 (2009).
[CrossRef] [PubMed]

G. Bouchoux, J. De Winter, R. Flammang, and P. Gerbaux, “Aromatic substitution reactions between ionized benzene derivatives and neutral methyl isocyanide,” J. Phys. Chem. A114(27), 7408–7416 (2010).
[CrossRef] [PubMed]

Org. Syn. Coll. (1)

G. S. Hiers and F. D. Hager, “Anisole,” Org. Syn. Coll.1, 58 (1941).

Synlett (2)

H. Togo and M. Katohgi, “Synthetic uses of organohypervalent iodine compounds through radical pathways,” Synlett2001(5), 565–581 (2001).

S. Furuyama and H. Togo, “An efficient preparation of chroman derivatives from 3-aryl-1-propanols and related compounds with 1,3-diiodo-5,5-dimethylhydantoin under irradiation conditions,” Synlett2010(15), 2325–2329 (2010).
[CrossRef]

Other (2)

H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D. Garbe, and W. Paulus, Phenol derivatives in Ullmann's encyclopedia of industrial chemistry (Wiley-VCH, Weinheim 2002).

J. J. Li and D. S. Johnson, Modern Drug Synthesis (Wiley, Hoboken, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Stoichiometric equation of photoalkoxylation of benzene with alcohol by QuCN+.

Fig. 2
Fig. 2

Time profiles of consumption of benzene (blue) and formation of alkoxybenzene (red) in the photocatalytic alkoxylation of benzene with (a) methanol, (b) ethanol, (c) iso-propanol and (d) tert-butanol catalyzed by QuCN+ in oxygen-saturated MeCN (1.0 mL) at 298 K.

Fig. 3
Fig. 3

Quantum yield of formation of ethoxybenzene (Φ) vs. [EtOH].

Fig. 4
Fig. 4

(a) Fluorescence spectra of QuCN+ (20 μM) with various concentrations of benzene (0 – 4.0 mM) in deaerated MeCN excited at 330 nm. (b) Stern-Volmer plot for the fluorescence quenching of 1QuCN+* by benzene.

Fig. 5
Fig. 5

(a) Transient absorption spectrum of an MeCN solution of QuCN+ and benzene (1.0 M) taken at 1 μs after nanosecond laser excitation (λex = 355 nm). (b) Decay time profiles of absorbance at 850 nm with various concentrations of MeOH (0 – 42 mM). (c) Plots of decay rate constants vs. concentration of alcohols.

Fig. 6
Fig. 6

Photocatalytic mechanism of alkoxylation of benzene with QuCN+.

Fig. 7
Fig. 7

Stoichiometric equation of photocyclization of 3-phenyl-1-propanol by QuCN+.

Tables (1)

Tables Icon

Table 1 Conversions, selectivities, yields, and quantum yields (Φ) of photocatalytic alkoxylation of benzene with alcohols in MeCN[a]

Metrics