Abstract

A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006).
    [CrossRef] [PubMed]
  2. M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
    [CrossRef] [PubMed]
  3. M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008).
    [CrossRef] [PubMed]
  4. F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chem. Mater.20(1), 35–54 (2008).
    [CrossRef]
  5. H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
    [CrossRef]
  6. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
    [CrossRef] [PubMed]
  7. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
    [CrossRef]
  8. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
    [CrossRef] [PubMed]
  9. I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
    [CrossRef]
  10. H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
    [CrossRef]
  11. Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
    [CrossRef] [PubMed]
  12. Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
    [CrossRef] [PubMed]
  13. S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
    [CrossRef]
  14. T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
    [CrossRef]
  15. H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
    [CrossRef] [PubMed]
  16. J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004).
    [CrossRef]
  17. J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003).
    [CrossRef] [PubMed]
  18. S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
    [CrossRef] [PubMed]
  19. H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
    [CrossRef] [PubMed]
  20. X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
    [CrossRef]
  21. S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
    [PubMed]
  22. W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
    [CrossRef] [PubMed]
  23. J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
    [CrossRef]
  24. H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
    [CrossRef]
  25. X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
    [CrossRef] [PubMed]
  26. C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
    [CrossRef]
  27. W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
    [CrossRef]
  28. T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996).
    [CrossRef]
  29. T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996).
    [CrossRef]
  30. C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
    [CrossRef]
  31. W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
    [CrossRef]
  32. M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
    [CrossRef]
  33. H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004).
    [CrossRef]
  34. K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
    [CrossRef]
  35. A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
    [CrossRef] [PubMed]

2011 (2)

H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
[CrossRef]

H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
[CrossRef] [PubMed]

2010 (2)

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

2009 (6)

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
[CrossRef]

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

2008 (2)

M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008).
[CrossRef] [PubMed]

F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chem. Mater.20(1), 35–54 (2008).
[CrossRef]

2007 (4)

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

2006 (3)

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
[CrossRef] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006).
[CrossRef] [PubMed]

2005 (3)

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
[CrossRef]

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

2004 (4)

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004).
[CrossRef]

J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004).
[CrossRef]

2003 (2)

J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003).
[CrossRef] [PubMed]

S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

1996 (2)

T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996).
[CrossRef]

T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996).
[CrossRef]

1992 (1)

S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
[PubMed]

1991 (1)

W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
[CrossRef]

1986 (1)

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Arjavalingam, G.

W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
[CrossRef]

Banerjee, M.

M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
[CrossRef]

Beveridge, T. J.

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
[PubMed]

Bolger, H.

S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
[CrossRef] [PubMed]

Brendel, R.

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004).
[CrossRef]

Chen, X.

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Chen, Z.

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

Chow, S. K.

T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
[CrossRef]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Datta, S. K.

M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
[CrossRef]

Ding, J.

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

Dodson, C.

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Domen, K.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Dong, F.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Falaras, P.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Fan, T.

H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
[CrossRef]

H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
[CrossRef] [PubMed]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
[CrossRef]

Fitch, M.

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Gong, X.

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

Guan, B.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Guo, P.

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

Guo, Q.

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Gust, D.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Hall, S. R.

S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
[CrossRef] [PubMed]

Hambourger, M.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Hara, M.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

Harauz, G.

S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
[PubMed]

He, J.

J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004).
[CrossRef]

Hendricks, T. J.

T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996).
[CrossRef]

T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996).
[CrossRef]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Howell, J. R.

T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996).
[CrossRef]

T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996).
[CrossRef]

Hu, Y.

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

Huang, J.

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003).
[CrossRef] [PubMed]

Ishikawa, A.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

Jiang, W.

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Kim, D.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Kobayashi, H.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

Kondo, J. N.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

Kontos, I.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Kramer, D. M.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Kudo, A.

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Kunitake, T.

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004).
[CrossRef]

J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003).
[CrossRef] [PubMed]

Kunze, J.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Leckie, J. O.

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

Leung, D. Y. C.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

Leung, M. K. H.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

Lewis, N. S.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006).
[CrossRef] [PubMed]

Li, W. C.

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

Li, X.

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Li, Y.

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
[CrossRef] [PubMed]

Likodimos, V.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Lin, C.

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

Lin, J.

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

Liu, J.

X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
[CrossRef] [PubMed]

Liu, Y.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

Lu, A. H.

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

Mann, S.

S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
[CrossRef] [PubMed]

Mao, S. S.

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Maruya, K.

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Matsunaga, N.

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

Moore, A. L.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Moore, G. F.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Moore, T. A.

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

Myneni, S. C. B.

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Ni, M.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

Nocera, D. G.

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006).
[CrossRef] [PubMed]

Nodasaka, Y.

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

Ogawa, H.

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Ogihara, H.

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

Onishi, T.

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Osiander, R.

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Osterloh, F. E.

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chem. Mater.20(1), 35–54 (2008).
[CrossRef]

Papavassiliou, G.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Parkinson, B. A.

M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008).
[CrossRef] [PubMed]

Rabias, I.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Robertson, W. M.

W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
[CrossRef]

Sabio, E. M.

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

Sadakane, M.

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

Saha, H.

M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
[CrossRef]

Saxena, A.

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Schmuki, P.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Schultze-Lam, S.

S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
[PubMed]

Schuster, P.

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Schuth, F.

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

Seel, H.

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004).
[CrossRef]

Shibata, M.

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Shimanoe, K.

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

Shinde, S. L.

W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
[CrossRef]

Song, B.

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Spicer, J.

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Stergiopoulos, T.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Sumathy, K.

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

Sun, D. D.

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

Sun, X.

X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
[CrossRef] [PubMed]

Takata, T.

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

Tanaka, A.

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

Townsend, T. K.

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

Tsoukleris, D. S.

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

Ueda, W.

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

Wang, H.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Ward, B. B.

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Weidenthaler, C.

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

Woodhouse, M.

M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Xuan, S.

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

Yamazoe, N.

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

Yang, P.

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

Yu, M.

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

Zhang, D.

H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
[CrossRef] [PubMed]

H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
[CrossRef]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
[CrossRef]

Zhang, W.

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Zhao, W.

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Zhou, H.

H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
[CrossRef] [PubMed]

H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
[CrossRef]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

Adv. Funct. Mater. (2)

X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009).
[CrossRef]

C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010).
[CrossRef] [PubMed]

AIP Conf. Proc. (1)

C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005).
[CrossRef]

Chem. Commun. (Camb.) (1)

S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003).
[CrossRef] [PubMed]

Chem. Mater. (7)

W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004).
[CrossRef]

J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005).
[CrossRef]

H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006).
[CrossRef]

F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chem. Mater.20(1), 35–54 (2008).
[CrossRef]

I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009).
[CrossRef]

H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010).
[CrossRef]

J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004).
[CrossRef]

Chem. Rev. (1)

X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007).
[CrossRef] [PubMed]

Chem. Soc. Rev. (2)

M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009).
[CrossRef] [PubMed]

M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008).
[CrossRef] [PubMed]

ChemCatChem (1)

H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011).
[CrossRef]

Chemistry (2)

Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007).
[CrossRef] [PubMed]

X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006).
[CrossRef] [PubMed]

ChemSusChem (1)

H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003).
[CrossRef] [PubMed]

A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991).
[CrossRef]

J. Bacteriol. (1)

S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992).
[PubMed]

J. Chem. Soc. Chem. Commun. (1)

K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986).
[CrossRef]

J. Heat Transfer (2)

T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996).
[CrossRef]

T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996).
[CrossRef]

J. Phys. Chem. C (1)

S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009).
[CrossRef]

Langmuir (1)

W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004).
[CrossRef] [PubMed]

Nanotechnology (2)

M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005).
[CrossRef]

Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009).
[CrossRef] [PubMed]

Nature (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006).
[CrossRef] [PubMed]

Prog. Mater. Sci. (1)

T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007).
[CrossRef]

Thin Solid Films (1)

H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the biotemplating synthesis of biomorphic hollow structures via the surface sol-gel process.

Fig. 2
Fig. 2

(a) TGA and DTA curves of the bacterial template. (b) XRD patterns of TiO2 hollow spheres after calcination at 700þC, with the inset of the hybrids without calcination.

Fig. 3
Fig. 3

FESEM images of (a) original templates of Str. theromophilus. (b) bacteria/TiO2 gel hybrid spheres using Str. Theromophilus as templates, with the inset of a magnified image. The surface sol-gel deposition was repeated five times. (c) TEM image of an individual bacteria/TiO2 gel hybrid diplo-spheres by templating of a duplicating Str. Theromophilus cell. The surface sol-gel deposition was repeated five times. (d) FESEM image of TiO2 hollow spheres with five repeating cycles. (e) TEM image of TiO2 hollow spheres with five repeating cycles, (f) an individual TiO2 hollow sphere with three repeating cycles, with the inset of the SAED pattern.

Fig. 4
Fig. 4

FESEM image of (a) bacteria/TiO2 gel hybrid tubes using L. bulgaricus as the templates, with the inset of a TEM image of the template L. bulgaricus (b) TEM image of an individual TiO2 nanotube by calcination of the bacteria/ TiO2 gel hybrid tubes at 700°C. The surface sol-gel deposition was repeated five times for these samples.

Fig. 5
Fig. 5

(a) Nitrogen adsorption-desorption isotherm and BJH pore size distribution plot (inset) of TiO2 hollow spheres. (b) UV-Vis absorption spectra of biomorphic TiO2 hollow spheres and TiO2 nanoparticles. (c) schematic illustration of light pathway within hollow structures. (1) multiple scattering within hollow cavity. (2) light incident on smaller radii voids and is uniformly scattered and (3) forward scattering may be greater than backward scattering in the case of higher radii voids.

Fig. 6
Fig. 6

(a). Hydrogen evolution from the samples in 20% aqueous methanol under UV and visible light irradiation, with the inset of the hydrogen evolution rates of four typical samples. (b). Schematic illustration of the photocatalytic hydrogen evolution processes.

Fig. 7
Fig. 7

Oxygen evolution from TiO2 hollow spheres in 0.05M aqueous silver nitrate solution under UV and visible light irradiation.

Tables (1)

Tables Icon

Table 1 Photochemical hydrogen evolution in 20% methanol (aq) under UV and visible light irradiation

Metrics