Abstract

A polycrystalline Cu2ZnSnS4 thin film was deposited on fused quartz by co-evaporation. The selected thickness was ~100 nm to avoid artifacts in its optical properties caused by thicker as-grown films. The composition and phase of the film were checked with x-ray fluorescence, Raman shift spectroscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. An improved spectroscopic ellipsometry methodology with two-side measurement geometries was applied to extract the complex dielectric function ε = ε1 + iε2 of the Cu2ZnSnS4 thin film between 0.73 and 6.5 eV. Five critical points were observed, at 1.32 (fundamental band gap), 2.92, 3.92, 4.96, and 5.62 eV, respectively. The ε spectra are in reasonable agreement with those from theoretical calculations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
    [CrossRef]
  2. H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
    [CrossRef]
  3. B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
    [CrossRef]
  4. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
    [CrossRef]
  5. J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
    [CrossRef]
  6. Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
    [CrossRef]
  7. S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).
  8. R. W. Collins and A. S. Ferlauto, Optical Physics of Materials in Handbook of Ellipsometry, edited by H. G. Tompkins and E. A. Irene (William Andrew, Norwich, 2005), chap. 2.
  9. S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
    [CrossRef]
  10. K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
    [CrossRef]
  11. G. Teeter, H. Du, J. E. Leisch, M. Young, F. Yan, S. W. Johnston, P. Dippo, D. Kuciauskas, M. J. Romero, P. Newhouse, S. E. Asher, and D. S. Ginley, “Combinatorial study of thin-film Cu2ZnSnS4 synthesis via metal precursor sulfurization,” in Proceedings of 35th IEEE Photovoltaic Specialists Conference, (IEEE, 2010), pp. 650–655.
  12. P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
    [CrossRef]
  13. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
    [CrossRef]
  14. K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
    [CrossRef]
  15. D. E. Aspnes, “Local‐field effects and effective‐medium theory: a microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
    [CrossRef]
  16. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (North-Holland, 1977).
  17. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
    [CrossRef]
  18. H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films519(21), 7508–7512 (2011).
    [CrossRef]

2011 (6)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films519(21), 7508–7512 (2011).
[CrossRef]

2010 (2)

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

2009 (3)

P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
[CrossRef]

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

2008 (1)

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

2003 (1)

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

2001 (1)

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

1982 (1)

D. E. Aspnes, “Local‐field effects and effective‐medium theory: a microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Alonso, M. I.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Araki, H.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Local‐field effects and effective‐medium theory: a microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Barkhouse, D. A. R.

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

Berg, D. M.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Bojarczuk, N. A.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Calvo-Barrio, L.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Chey, S. J.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Choi, S. G.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

da Cunha, A. F.

P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
[CrossRef]

Dale, P. J.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Fernandes, P. A.

P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
[CrossRef]

Fontané, X.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Garriga, M.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Gokmen, T.

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

Guc, M.

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

Guha, S.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Gunawan, O.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Gurieva, G.

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

Hariskos, D.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Izquierdo-Roca, V.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Jackson, P.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Jimbo, K.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Katagiri, H.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Kim, K. H.

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Lee, J. C.

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Lee, S. Y.

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Levcenko, S.

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

Levi, D. H.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Lotter, E.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Maw, W. S.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Menner, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Mitzi, D.

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Mitzi, D. B.

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

Miyamoto, Y.

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Morante, J. R.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Moritake, N.

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Muñoz-Sanjosé, V.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Nam, H. D.

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Nateprov, A.

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

Norman, A. G.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Oishi, K.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Oonuki, M.

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Paetel, S.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Pascual, J.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Pérez-Rodriguez, A.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Perkins, C. L.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Persson, C.

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films519(21), 7508–7512 (2011).
[CrossRef]

Powalla, M.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Reuter, K. B.

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

Salomé, P. M. P.

P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
[CrossRef]

Saucedo, E.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Seol, J. S.

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Shin, B.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Siebentritt, S.

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

Takeuchi, A.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Tanaka, K.

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Todorov, T.

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Todorov, T. K.

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

Uchiki, H.

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Wakita, K.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Wang, K.

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

Wischmann, W.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Wuerz, R.

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

Yamamoto, N.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Yamazaki, M.

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

Zhao, H.

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films519(21), 7508–7512 (2011).
[CrossRef]

Zhu, Y.

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

Zúñiga-Pérez, J.

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Am. J. Phys. (1)

D. E. Aspnes, “Local‐field effects and effective‐medium theory: a microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J. R. Morante, D. M. Berg, P. J. Dale, and S. Siebentritt, “In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications,” Appl. Phys. Lett.98(18), 181905 (2011).
[CrossRef]

K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, and S. Guha, “Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.98(5), 051912 (2011).
[CrossRef]

K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, “Thermally evaporated Cu2ZnSnS4 solar cells,” Appl. Phys. Lett.97(14), 143508 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. G. Choi, J. Zúñiga-Pérez, V. Muñoz-Sanjosé, A. G. Norman, C. L. Perkins, and D. H. Levi, “Complex dielectric function and refractive index spectra of epitaxial CdO thin film grown on r-plane sapphire from 0.74 to 6.45 eV,” J. Vac. Sci. Technol. B28(6), 1120–1124 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Optical Properties of Cu2ZnSnS4 Thin Films Prepared by Sol–Gel and Sulfurization Method,” Jpn. J. Appl. Phys.47(1), 596–597 (2008).
[CrossRef]

Moldavian J. Phys. Sci. (1)

S. Levcenko, G. Gurieva, M. Guc, and A. Nateprov, “Optical constants of Cu2ZnSnS4 bulk crystals,” Moldavian J. Phys. Sci.8(2), 173–177 (2009).

Phys. Rev. B (1)

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B63(7), 075203 (2001).
[CrossRef]

Prog. Photovolt. Res. Appl. (3)

P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl.19(7), 894–897 (2011).
[CrossRef]

B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, “Thin film solar cell with 8.4% power conversion efficiency using an earth abundant Cu2ZnSnS4 absorber,” Prog. Photovolt. Res. Appl.n/a (2011), doi:.
[CrossRef]

D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Prog. Photovolt. Res. Appl. (2011), doi:.
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim, “Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Sol. Energy Mater. Sol. Cells75(1–2), 155–162 (2003).
[CrossRef]

Thin Solid Films (3)

H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films517(7), 2455–2460 (2009).
[CrossRef]

H. Zhao and C. Persson, “Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4,” Thin Solid Films519(21), 7508–7512 (2011).
[CrossRef]

P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, “Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,” Thin Solid Films517(7), 2519–2523 (2009).
[CrossRef]

Other (3)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (North-Holland, 1977).

R. W. Collins and A. S. Ferlauto, Optical Physics of Materials in Handbook of Ellipsometry, edited by H. G. Tompkins and E. A. Irene (William Andrew, Norwich, 2005), chap. 2.

G. Teeter, H. Du, J. E. Leisch, M. Young, F. Yan, S. W. Johnston, P. Dippo, D. Kuciauskas, M. J. Romero, P. Newhouse, S. E. Asher, and D. S. Ginley, “Combinatorial study of thin-film Cu2ZnSnS4 synthesis via metal precursor sulfurization,” in Proceedings of 35th IEEE Photovoltaic Specialists Conference, (IEEE, 2010), pp. 650–655.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A typical Raman shift spectrum (a), and a scanning transmission electron microscopy image (b) taken in the phase-pure Cu2ZnSnS4 areas of the thin film. Energy dispersive X-ray spectroscopy on the selected points marked in (b) are depicted in panels (c) - (e). Panel (e) was drawn on an expanded x scale to show the details.

Fig. 2
Fig. 2

The measurement geometries for the spectroscopic ellipsometry performed in this study.

Fig. 3
Fig. 3

The film side (upper) and through-glass (lower) SE spectra of the Cu2ZnSnS4 thin film.

Fig. 4
Fig. 4

The real (upper) and imaginary (lower) part of the complex dielectric function ε of the Cu2ZnSnS4 thin film of this study (solid curves). The observed critical points are marked with arrows. The experimental ε spectra are compared with the ordinary (εx, dashed curves) and extraordinary (εz, dotted curves) ε spectra from theoretical calculations (Ref. [18]).

Fig. 5
Fig. 5

The second derivative spectra of the experimental ε spectra in Fig. 4, and the model fits based on Eq. (1) used to deduce the transition energy of the (a) E0, (b) E1(A), (c) E1(B), and (d) E2(B) critical point.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε= n { A n [exp(i ϕ n )] [ E n Ei( Γ n /2)] μ n }

Metrics