Abstract

We demonstrate a hybrid design of traditional GaAs-based solar cell combined with colloidal CdS quantum dots. With anti-reflective feature at long wavelength and down-conversion at UV regime, the CdS quantum dot effectively enhance the overall power conversion efficiency by as high as 18.9% compared to traditional GaAs-based device. A more detailed study showed an increase of surface photoconductivity due to UV presence, and the fill factor of the solar cell can be improved accordingly.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
    [CrossRef]
  2. S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,” Thin Solid Films403-404, 1–8 (2002).
    [CrossRef]
  3. R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
    [CrossRef]
  4. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
    [CrossRef] [PubMed]
  5. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
    [CrossRef] [PubMed]
  6. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
    [CrossRef]
  7. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
    [CrossRef]
  8. C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
    [CrossRef]
  9. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
    [CrossRef]
  10. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
    [CrossRef]
  11. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
    [CrossRef]
  12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  13. S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
    [CrossRef]
  14. X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
    [CrossRef]
  15. M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,” Bioscience29(9), 520–525 (1979).
    [CrossRef]
  16. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
    [CrossRef]
  17. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
    [CrossRef]
  18. H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5Suppl 5), A1141–A1147 (2011).
    [CrossRef] [PubMed]
  19. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
    [CrossRef]
  20. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011).
    [CrossRef]
  21. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
    [CrossRef]
  22. X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
    [CrossRef]
  23. E. Mutlugun, I. M. Soganci, and H. V. Demir, “Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV,” Opt. Express15(3), 1128–1134 (2007).
    [CrossRef] [PubMed]
  24. S. M. Sze, Physics of Semiconductor Devices (Wiley, 2nd Edition, 1981), Chap. 14.
  25. C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
    [CrossRef]

2011

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5Suppl 5), A1141–A1147 (2011).
[CrossRef] [PubMed]

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011).
[CrossRef]

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

2010

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

2009

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

2008

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

2007

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

E. Mutlugun, I. M. Soganci, and H. V. Demir, “Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV,” Opt. Express15(3), 1128–1134 (2007).
[CrossRef] [PubMed]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

2005

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

2002

S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,” Thin Solid Films403-404, 1–8 (2002).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

2000

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

1997

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

1979

M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,” Bioscience29(9), 520–525 (1979).
[CrossRef]

1961

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Barkhouse, D. A. R.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Baur, C.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Bawendi, M. G.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Bensch, W.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Bett, A.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Bett, A. W.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Brzozowski, L.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Caldwell, M. M.

M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,” Bioscience29(9), 520–525 (1979).
[CrossRef]

Cao, G.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Chang, C. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chang, C.-H.

Chang, Y. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chen, H.-C.

Chiu, C. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Chou, T. P.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Debnath, R.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Demir, H. V.

Dimroth, F.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Empedocles, S. A.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Geyer, S.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

Green, M. A.

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Guter, W.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Halpert, J. E.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

Han, H.-W.

Hoogland, S.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Hsu, S. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Hupp, J. T.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Ikeda, E.

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

Jenekhe, S. A.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Kagan, C. R.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Kamat, P. V.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Kastner, M. A.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Klaer, J.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Klampaftis, E.

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

Klenk, R.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Koleilat, G. I.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Kongkanand, A.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Kostler, W.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Kramer, I. J.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Kuno, M.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Kuo, H. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Kuo, H.-C.

Kurita, H.

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

Leatherdale, C. A.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Levina, L.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Li, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

Li, L. S.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Li, Q.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

Li, Y.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Lin, C.-C.

Liu, H.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Luck, I.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Lux-Steiner, M. C.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

McIntosh, K. R.

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

Mentzel, T. S.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

Meusel, M.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Meyer, N.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Morgan, N. Y.

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Mutlugun, E.

Ohmori, M.

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

Oliva, E.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Pi, X.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

Porter, V. J.

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Richards, B. S.

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

Ross, D.

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

Ruhle, U.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Russo, B.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Sargent, E. H.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Schatz, G. C.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Scheer, R.

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Schone, J.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Siebentritt, S.

S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,” Thin Solid Films403-404, 1–8 (2002).
[CrossRef]

Siefer, G.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Soganci, I. M.

Standridge, S. D.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

Steiner, M.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Strobl, G.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Sun, Q.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Švrcek, V. C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Takamoto, T.

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

Takechi, K.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Tanabe, K.

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

Tang, J.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Tsai, M.-A.

Tsai, Y.-L.

Tvrdy, K.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

Wang, D.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Wang, H.-W.

Wang, X.

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Wang, Y. A.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

Xu, J.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Yang, C.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Yang, C. S.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Yang, D.

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

Yu, J. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Yu, P.

H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5Suppl 5), A1141–A1147 (2011).
[CrossRef] [PubMed]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Zhang, Q.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Zhu, T.

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

Adv. Funct. Mater.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009).
[CrossRef]

Appl. Phys. Lett.

T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997).
[CrossRef]

W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Bioscience

M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,” Bioscience29(9), 520–525 (1979).
[CrossRef]

Energies

K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009).
[CrossRef]

J. Am. Chem. Soc.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008).
[CrossRef] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002).
[CrossRef]

J. Mater. Sci. Mater. Electron.

M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007).
[CrossRef]

J. Sol. Energy Eng.

C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007).
[CrossRef]

Nat. Photonics

Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007).
[CrossRef]

X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010).
[CrossRef]

C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000).
[CrossRef]

Prog. Photovolt. Res. Appl.

E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007).
[CrossRef]

X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011).
[CrossRef]

E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009).
[CrossRef]

Thin Solid Films

S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,” Thin Solid Films403-404, 1–8 (2002).
[CrossRef]

R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005).
[CrossRef]

Other

S. M. Sze, Physics of Semiconductor Devices (Wiley, 2nd Edition, 1981), Chap. 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic plot of the fabricated single-junction GaAs solar cell with CdS QDs.

Fig. 2
Fig. 2

(a) TEM of CdS nanocrystal on a GaAs solar cell; (b) the energy dispersive spectrometer (EDS) was taken by a JEOL JEM-2100F system.

Fig. 3
Fig. 3

(a) UV-Visible absorbance (red) and photoluminescence (blue) spectra of CdS QDs measure in toluene. The PLE spectrum was taken at the maximum of PL intensity (~470 nm). For the PL spectrum, the sample was excited by a light beam with 365 nm. The inset is the CdS quantum dot solution under UV excitation. (b) The measured reflectance spectra for QD-coated, No-QD coated, and AR-coated solar cells.

Fig. 4
Fig. 4

Photovoltaic I–V characteristics of QD-coated, No-QD coated, and AR-coated solar cells.

Fig. 5
Fig. 5

(a) Measurement of External quantum efficiency of QD-coated, No-QD coated, and AR-coated solar cells. (b) Enhancement of EQE between QD-coated and No-QD coated devices. Peak at ~310 nm indicates photon down-conversion.

Fig. 6
Fig. 6

IV Measurement with UV light. The inset is the filtered UV PCE of the CQD/GaAs cell (blue line) and the efficiency enhancement (ηCQDno CQD, green line).

Fig. 7
Fig. 7

The distribution of detected currents of QD on GaAs surface with and without UV lamp on. The pink and blue vertical lines indicate the average currents from the measurement. When UV lamp is off, the average current is 2.10pA. If we turn on the UV lamp, the average jump up to 3.69pA (an 76% increase). The inset is the conductive AFM scanning plot.

Tables (1)

Tables Icon

Table 1 A Summarized Current-Voltage Characteristics of GaAs I, GaAs II, and GaAs III Solar Cells

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J sc = e hc λ×EQE(λ)× I AM1.5G (λ)dλ

Metrics