Abstract

Based on the composite consisting of ZnO nanorods (NRs) grown on InGaN/GaN multiple quantum wells (MQWs), we have demonstrated a novel light-emitting device (LED) that has the capability to emit dual beam radiations. Interestingly, the relative intensity between the dual emissions is able to be manipulated by their polarizations. The underlying mechanism can be well understood in terms of the anisotropic optical properties arising from the geometric structures of constituent nanoscale materials. The results shown here may be extended to many other nanocomposite systems and pave a new pathway to create LEDs with tunable properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
    [CrossRef]
  2. H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
    [CrossRef]
  3. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
    [CrossRef]
  4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  5. N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
    [CrossRef]
  6. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
    [CrossRef]
  7. H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
    [CrossRef]
  8. N. Kikuchi, “Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation,” J. Lightwave Technol.19(4), 480–486 (2001).
    [CrossRef]
  9. J. R. Law, “Color selection polarizing beam splitter,” U. S. Patent 3497283 (1970).
  10. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  11. C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
    [CrossRef]
  12. M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
    [CrossRef]
  13. C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
    [CrossRef]
  14. Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
    [CrossRef]
  15. J. von Pezold and P. D. Bristowe, “Atomic structure and electronic properties of the GaN/ZnO (0001) interface,” J. Mater. Sci.40(12), 3051–3057 (2005).
    [CrossRef]
  16. K. W. Jang, D. C. Oh, T. Minegishi, H. Suzuki, T. Hanada, H. Makino, M. W. Cho, T. Yao, and S. K. Hong, “ZnO/GaN heteroepitaxy,” Mater. Res. Soc. Symp. Proc. 829, B10.3.1–B10.3.12 (2005).
  17. E. Fred Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), Chap. 4.
  18. E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
    [CrossRef]
  19. Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
    [CrossRef]
  20. J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
    [CrossRef]
  21. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 8.
  22. T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
    [CrossRef]
  23. K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
    [CrossRef]
  24. H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, “Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating,” Opt. Express16(9), 6361–6367 (2008).
    [CrossRef] [PubMed]
  25. N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
    [CrossRef]

2010 (1)

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

2009 (2)

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

2008 (3)

2007 (4)

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

2006 (1)

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

2005 (4)

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
[CrossRef]

J. von Pezold and P. D. Bristowe, “Atomic structure and electronic properties of the GaN/ZnO (0001) interface,” J. Mater. Sci.40(12), 3051–3057 (2005).
[CrossRef]

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

2004 (1)

N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
[CrossRef]

2003 (1)

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
[CrossRef]

2001 (2)

N. Kikuchi, “Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation,” J. Lightwave Technol.19(4), 480–486 (2001).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

1999 (1)

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

1998 (1)

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

Alivov, Ya. I.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Avrutin, V.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Bandic, Z. Z.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

Bayram, C.

C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
[CrossRef]

Bridger, P. M.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

Bristowe, P. D.

J. von Pezold and P. D. Bristowe, “Atomic structure and electronic properties of the GaN/ZnO (0001) interface,” J. Mater. Sci.40(12), 3051–3057 (2005).
[CrossRef]

Cai, S.

M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
[CrossRef]

Chao, C. Y.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chen, C. T.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Chen, C. W.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, “Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating,” Opt. Express16(9), 6361–6367 (2008).
[CrossRef] [PubMed]

Chen, C. Y.

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chen, H. S.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Chen, T. T.

Chen, Y. F.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, “Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating,” Opt. Express16(9), 6361–6367 (2008).
[CrossRef] [PubMed]

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
[CrossRef]

Chen, Y. L.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Chen, Y. T.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Cheng, C. L.

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

Chhajed, S.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

Cho, J.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

Cho, S.-J.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Choi, C. J.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Chou, P. T.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Chu, F. C.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

Chu, K. C.

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Diao, P.

M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
[CrossRef]

Dogan, S.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Ferguson, I. T.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Fu, H. K.

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, “Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating,” Opt. Express16(9), 6361–6367 (2008).
[CrossRef] [PubMed]

Gardner, N. F.

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

Guo, M.

M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
[CrossRef]

Hsu, N. E.

N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
[CrossRef]

Huang, C. F.

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

Huang, J. J.

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Hung, W. K.

N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
[CrossRef]

Hwang, D. K.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Jeon, S. K.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Kang, C. C.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Kang, C. K.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Kang, D. N. H.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Kikuchi, N.

Kim, D. J.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Kim, J. C.

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

Kim, J. K.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

Kim, K. K.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Krames, M. R.

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

Lai, C. W.

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Lee, C. Y.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Lee, I. H.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Lim, J. H.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Lin, C. F.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Lin, T. Y.

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
[CrossRef]

Liu, C.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Lu, C. F.

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

McGill, T. C.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

Moon, Y. T.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Morkoç, H.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Noh, D. Y.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Özgür, Ü.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Park, E. H.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Park, I. K.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Park, J. S.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Park, S. J.

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Piquette, E. C.

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

Razeghi, M.

C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
[CrossRef]

Reshchikov, M. A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Rogers, D. J.

C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Savory, S. J.

Schubert, E. F.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

Seong, T. Y.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Shen, Y. C.

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

Song, K. M.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Tang, T. Y.

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

Teherani, F. H.

C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
[CrossRef]

Teke, A.

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

von Pezold, J.

J. von Pezold and P. D. Bristowe, “Atomic structure and electronic properties of the GaN/ZnO (0001) interface,” J. Mater. Sci.40(12), 3051–3057 (2005).
[CrossRef]

Wang, C. H.

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

H. K. Fu, C. W. Chen, C. H. Wang, T. T. Chen, and Y. F. Chen, “Creating optical anisotropy of CdSe/ZnS quantum dots by coupling to surface plasmon polariton resonance of a metal grating,” Opt. Express16(9), 6361–6367 (2008).
[CrossRef] [PubMed]

Wang, J. Y.

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Wierer, J. J.

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

Wu, K. J.

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, C. C.

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yi, M. S.

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Yoo, T. K.

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

H. K. Fu, C. L. Cheng, C. H. Wang, T. Y. Lin, and Y. F. Chen, “Selective angle electroluminescence of light-emitting diodes based on nanostructured ZnO/GaN heterojunctions,” Adv. Funct. Mater.19(21), 3471–3475 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering,” Adv. Mater. (Deerfield Beach Fla.)18(20), 2720–2724 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” Appl. Phys. Lett.91, 051117 (2007).
[CrossRef]

C. Bayram, F. H. Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett.93(8), 081111 (2008).
[CrossRef]

C. F. Huang, C. F. Lu, T. Y. Tang, J. J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett.90(15), 151122 (2007).
[CrossRef]

E. H. Park, D. N. H. Kang, I. T. Ferguson, S. K. Jeon, J. S. Park, and T. K. Yoo, “The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode,” Appl. Phys. Lett.90(3), 031102 (2007).
[CrossRef]

Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, “Minority carrier diffusion length and lifetime in GaN,” Appl. Phys. Lett.72(24), 3166–3168 (1998).
[CrossRef]

J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, “Double side electroluminescence from p-NiO/n-ZnO nanowire heterojunctions,” Appl. Phys. Lett.95(13), 131117 (2009).
[CrossRef]

T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.82(6), 880–882 (2003).
[CrossRef]

N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.86(11), 111101 (2005).
[CrossRef]

J. Appl. Phys. (2)

N. E. Hsu, W. K. Hung, and Y. F. Chen, “Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,” J. Appl. Phys.96(8), 4671–4673 (2004).
[CrossRef]

Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

J. von Pezold and P. D. Bristowe, “Atomic structure and electronic properties of the GaN/ZnO (0001) interface,” J. Mater. Sci.40(12), 3051–3057 (2005).
[CrossRef]

J. Phys. Chem. C (1)

H. S. Chen, C. W. Chen, C. H. Wang, F. C. Chu, C. Y. Chao, C. C. Kang, P. T. Chou, and Y. F. Chen, “Color-tunable light-emitting device based on the mixture of CdSe nanorods and dots embedded in liquid-crystal cells,” J. Phys. Chem. C114(17), 7995–7998 (2010).
[CrossRef]

J. Solid State Chem. (1)

M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions,” J. Solid State Chem.178(6), 1864–1873 (2005).
[CrossRef]

Nano Lett. (1)

K. J. Wu, K. C. Chu, C. Y. Chao, Y. F. Chen, C. W. Lai, C. C. Kang, C. Y. Chen, and P. T. Chou, “CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices,” Nano Lett.7(7), 1908–1913 (2007).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi, B Basic Res. (1)

Y. T. Moon, D. J. Kim, K. M. Song, I. H. Lee, M. S. Yi, D. Y. Noh, C. J. Choi, T. Y. Seong, and S. J. Park, “Optical and structural studies of phase separation in InGaN film grown by MOCVD,” Phys. Status Solidi, B Basic Res.216(1), 167–170 (1999).
[CrossRef]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Other (4)

J. R. Law, “Color selection polarizing beam splitter,” U. S. Patent 3497283 (1970).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 8.

K. W. Jang, D. C. Oh, T. Minegishi, H. Suzuki, T. Hanada, H. Makino, M. W. Cho, T. Yao, and S. K. Hong, “ZnO/GaN heteroepitaxy,” Mater. Res. Soc. Symp. Proc. 829, B10.3.1–B10.3.12 (2005).

E. Fred Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Top view and (b) side view of scanning electron microscope images of InGaN/GaN/ZnO nanocomposite material. (c) X-ray diffraction spectrum and (d) x-ray diffraction spectrum with enlarged scale of 33.6-36.0 degree in (c).

Fig. 2
Fig. 2

(a) Illustration of experimental details of electroluminescence measurements for the composited light-emitting device. (b) The current through the light-emitting device as a function of bias voltage. (c) Current dependence of electroluminescence spectra of the composited light-emitting device. (d) Intensities of the 380 nm and 440 nm emissions as functions of the injection current.

Fig. 3
Fig. 3

Bias voltage dependence of electroluminescence spectra of the composite light emitting device.

Fig. 4
Fig. 4

(a) Electroluminescence (EL) spectra from the composited light-emitting device through a rotatable polarizer with the angle of 0° and 90°. (b) Polarizer-angle-dependent EL intensities with the monochromator fixed at 380 nm and (c) 440 nm, respectinely. Malus’s-law-fitted lines of 380 nm and 440 nm emissions by Eq. (2) are also shown in (b) and (c).

Fig. 5
Fig. 5

Illustrations of the experimental details and measured spectra under different polarization for (a) InGaN/GaN quantum wells and (b) ZnO nanorods.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(θ)= I p cos 2 (θ+ϕ)+ 1 2 I u ,
ρ= I max I min I max + I min ,

Metrics