Abstract

Conventional semi-transparent photovoltaics suffer from an inherent tradeoff between the amount of visible light transmitted versus absorbed, reducing energy conversion efficiency when higher transparency is desired. As a solution to lift this tradeoff, we propose a wavelength and angular selective reflector and demonstrate a potential implementation utilizing high aspect ratio metal nanoparticles. Using the anisotropy in the localized surface plasmon resonance wavelength, the proposed device can selectively harness sunlight incident at an elevated angle, increasing the power conversion efficiency by a factor of 1.44, while maintaining 70 percent optical transparency at normal incidence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
    [CrossRef]
  2. R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011).
    [CrossRef]
  3. D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
    [CrossRef]
  4. R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
    [CrossRef]
  5. D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
    [CrossRef]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
    [CrossRef] [PubMed]
  8. M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
    [CrossRef] [PubMed]
  9. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
    [CrossRef]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  12. B. Roberts and P.-C. Ku, “Broadband characteristics of surface plasmon enhanced solar cells,” in 2010 35th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 002952–002954.
  13. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  14. E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
    [CrossRef]
  15. B. Smits, “An RGB to spectrum conversion for reflectances,” J. Graphics Tools4(4), 11–22 (1999).
  16. U.S. Department of Energy Benchmark, “U.S. Department of Energy Commercial Reference Building Models of the National Building Stock” (National Renewable Energy Laboratory, 2011). http://www.nrel.gov/docs/fy11osti/46861.pdf .

2011 (2)

D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
[CrossRef]

R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011).
[CrossRef]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

2009 (1)

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

2007 (1)

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

2006 (1)

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
[CrossRef]

2005 (1)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

2001 (1)

J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
[CrossRef]

1999 (1)

B. Smits, “An RGB to spectrum conversion for reflectances,” J. Graphics Tools4(4), 11–22 (1999).

1998 (1)

Alexandrou, I.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bailey-Salzman, R. F.

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
[CrossRef]

Benemann, J.

J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bulovic, V.

R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011).
[CrossRef]

Byun, J.

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Cansizoglu, M. F.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

Chan, W. W. H.

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

Chaney, S. B.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

Chehab, O.

J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
[CrossRef]

Dissanayake, D. M. N. M.

D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
[CrossRef]

Djurišic, A. B.

Dluhy, R. A.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

Elazar, J. M.

Engelken, R.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

Forrest, S. R.

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
[CrossRef]

Hayashi, Y.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jeon, G.

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Karabacak, T.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

Kim, J. K.

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Ku, P. C.

D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
[CrossRef]

Kwon, S.

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Lam, T. N. T.

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

Lee, J. I.

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Li, D. H. W.

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

Lioudakis, E.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

Lunt, R.

R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011).
[CrossRef]

Majewski, M. L.

Mak, A. H. L.

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Othonos, A.

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Rakic, A. D.

Rand, B. P.

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
[CrossRef]

Roberts, B.

D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Schaar-Gabriel, E.

J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
[CrossRef]

Seo, H. W.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

Shanmukh, S.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

Smits, B.

B. Smits, “An RGB to spectrum conversion for reflectances,” J. Graphics Tools4(4), 11–22 (1999).

Zhao, Y.-P.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

ACS Nano (1)

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010).
[CrossRef] [PubMed]

Appl. Energy (1)

D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006).
[CrossRef]

D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005).
[CrossRef]

R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. Appl. Phys. (1)

E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007).
[CrossRef]

J. Graphics Tools (1)

B. Smits, “An RGB to spectrum conversion for reflectances,” J. Graphics Tools4(4), 11–22 (1999).

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001).
[CrossRef]

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

U.S. Department of Energy Benchmark, “U.S. Department of Energy Commercial Reference Building Models of the National Building Stock” (National Renewable Energy Laboratory, 2011). http://www.nrel.gov/docs/fy11osti/46861.pdf .

B. Roberts and P.-C. Ku, “Broadband characteristics of surface plasmon enhanced solar cells,” in 2010 35th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 002952–002954.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Angle selective photovoltaic window, designed for transparency to normally incident light and harvesting of angled light, including direct sunlight.

Fig. 2
Fig. 2

Proposed geometry for semi-transparent thin film photovoltaic (including transparent electrodes (TE), electron/hole blocking layers (EBL/HBL) and thin absorbing region) with metal particle back scattering layer.

Fig. 3
Fig. 3

(a) Performance spectra for the device of Fig. 2 under normal illumination (dashed lines) and TM polarized illumination at an angle of 45 degrees (solid lines). Short wavelength LSP resonance at 400 nm dominates normal illumination. Angled illumination interacts with the 700 nm resonance, increasing PV absorption by backscattering. (b) PV absorption component, increasing with incident angle of TM polarized light.

Fig. 4
Fig. 4

(a) Simulated images, as seen through the transmission spectra for normal and 60 degree incident unpolarized light. (b) Tradeoff between transmission of normally incident visible light and PV absorption of solar radiation for a conventional semi-transparent BIPV window, with contours showing factors of improvement and a point indicating the performance with a selective scattering layer. The integration ranges for transmission and PV absorption calculations are from 480 – 650 nm and 480 – 780 nm, respectively.

Metrics