Abstract

Antireflective Si/oxide core-shell nanowire arrays (NWAs) were fabricated by galvanic etching and subsequent annealing process. The excellent light-harvesting characteristics of the core-shell NWAs, such as broadband working ranges, omnidirectionality, and polarization-insensitivity, ascribed to the smooth index transition from air to the substrates, have been demonstrated. By tuning core-shell volume ratios, we obtained enhanced light trapping regions implemented in either the planar Si underneath NWAs or the core regions of NWAs, greatly benefiting the geometry design of planar and radial p-n junction cell structures, respectively. This photon management scheme indicates the potential use in nanostructured photovoltaic applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
    [CrossRef]
  2. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
    [CrossRef]
  3. C. G. Someda, Electromagnetic Waves (Chapman & Hall, 1998).
  4. I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
    [CrossRef] [PubMed]
  5. D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
    [CrossRef] [PubMed]
  6. P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
    [CrossRef]
  7. X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
    [CrossRef]
  8. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
    [CrossRef] [PubMed]
  9. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  10. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
    [CrossRef]
  11. J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
    [CrossRef] [PubMed]
  12. J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
    [CrossRef] [PubMed]
  13. Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
    [CrossRef] [PubMed]
  14. S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
    [CrossRef] [PubMed]
  15. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  16. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
    [CrossRef] [PubMed]
  17. Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
    [CrossRef] [PubMed]
  18. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
    [CrossRef] [PubMed]
  19. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  20. Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
    [CrossRef]
  21. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  22. L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
    [CrossRef]
  23. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
    [PubMed]
  24. K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
    [CrossRef]
  25. C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
    [CrossRef]
  26. Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
    [CrossRef]
  27. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770 (1965).
    [CrossRef]
  28. S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
    [CrossRef]
  29. D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
    [CrossRef]
  30. P. Beckman and A. Spizzichno, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, 1963).
  31. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205 (1965).
    [CrossRef]
  32. S. Adachi, “Optical dispersion relations for Si and Ge,” J. Appl. Phys.66(7), 3224 (1989).
    [CrossRef]
  33. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
    [CrossRef]
  34. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
    [CrossRef] [PubMed]
  35. S. J. Wilson and M. C. Hutley, “The optical properties of 'Moth Eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [CrossRef]
  36. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
    [CrossRef]
  37. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
    [CrossRef]
  38. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
    [CrossRef]

2012 (2)

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
[CrossRef]

2011 (5)

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

2010 (10)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

2009 (2)

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

2008 (5)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
[CrossRef] [PubMed]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

2007 (3)

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

2006 (2)

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

2003 (1)

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

1989 (1)

S. Adachi, “Optical dispersion relations for Si and Ge,” J. Appl. Phys.66(7), 3224 (1989).
[CrossRef]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of 'Moth Eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

1965 (2)

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770 (1965).
[CrossRef]

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205 (1965).
[CrossRef]

Adachi, M. M.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Adachi, S.

S. Adachi, “Optical dispersion relations for Si and Ge,” J. Appl. Phys.66(7), 3224 (1989).
[CrossRef]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Alivisatos, A. P.

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

Anantram, M. P.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Bae, S. Y.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Bakkers, E. P.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Chang, H. C.

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Chang, J. Y.

Chao, Y. C.

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Chen, C. P.

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

Chen, C. Y.

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Chou, C. J.

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Chueh, Y. L.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Chueh, Y.-L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Chung, R. J.

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Dai, Y. A.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Davydov, A. V.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770 (1965).
[CrossRef]

Diedenhofen, S. L.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fan, Z.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Fang, X.

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

Fromer, N. A.

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Fu, P. H.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Gao, S.

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gómez Rivas, J.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770 (1965).
[CrossRef]

Grzela, G.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Gur, I.

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

Haller, E. E.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

He, J. H.

H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
[CrossRef]

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Ho, C. H.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hu, L.

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

Huang, C. F.

Huang, J. Y.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of 'Moth Eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Janssen, O. T.

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Jiang, B.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Jiang, P.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Kanaras, A. G.

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

Kang, C. F.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Karim, K. S.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Ko, H.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Krylyuk, S.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lai, K. Y.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
[CrossRef]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Lai, Y. L.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

Lee, C.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Lee, Y. C.

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Levin, I.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

Lew, K. K.

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

Lien, W. C.

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Lin, C. A.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Lin, G. J.

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Lin, G. R.

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

Lin, Y. R.

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Liu, B. Z.

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Malitson, I. H.

Manohara, H.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Miller, N.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Mobasser, S.

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

Mohammad, A. M.

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Mohney, S. E.

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Motayed, A.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Peng, K.

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Shir, D.

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Sun, C. H.

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Tsai, D. S.

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Tsai, K. T.

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Vaudin, M. D.

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

Wang, H. H.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

Wang, H. P.

H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Wang, X. D.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Wang, Y. L.

H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si nanowire arrays by anodic aluminum oxide template and catalytic etching for broadband omnidirectional light harvesting,” Opt. Express20(S1), A94 (2012).
[CrossRef]

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

Wang, Z. L.

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Wei, T. C.

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of 'Moth Eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Wu, C. S.

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Wu, M.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Wu, M. L.

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Yan, Y.

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Ye, C.

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

Yeh, L. K.

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Yen, T. J.

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Yu, K.

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Zhang, L.

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

ACS Nano (2)

D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, “Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays,” ACS Nano5(10), 7748–7753 (2011).
[CrossRef] [PubMed]

S. L. Diedenhofen, O. T. Janssen, G. Grzela, E. P. Bakkers, and J. Gómez Rivas, “Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires,” ACS Nano5(3), 2316–2323 (2011).
[CrossRef] [PubMed]

Adv. Energy Mater. (1)

L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1(4), 506–510 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition,” Adv. Funct. Mater.13(2), 127–132 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen, “Morphological control of single-crystalline silicon nanowire arrays near room temperature,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3811–3815 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

S. Krylyuk, A. V. Davydov, I. Levin, A. Motayed, and M. D. Vaudin, “Rapid thermal oxidation of silicon nanowires,” Appl. Phys. Lett.94(6), 063113 (2009).
[CrossRef]

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.91(23), 233117 (2007).
[CrossRef]

P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, “Efficiency enhancement of InGaN multi-quantum-well solar cells via light-harvesting SiO2 nano-honeycombs,” Appl. Phys. Lett.100(1), 013105 (2012).
[CrossRef]

C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Appl. Phys. Lett.92(6), 061112 (2008).
[CrossRef]

Energy Environ. Sci. (2)

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436 (2011).
[CrossRef]

J. Appl. Phys. (3)

S. Adachi, “Optical dispersion relations for Si and Ge,” J. Appl. Phys.66(7), 3224 (1989).
[CrossRef]

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys.36(12), 3770 (1965).
[CrossRef]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005).
[CrossRef]

J. Mater. Chem. (2)

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134 (2010).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon nanowires,” J. Vac. Sci. Technol. B24(3), 1333 (2006).
[CrossRef]

Nano Lett. (10)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, and A. P. Alivisatos, “Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals,” Nano Lett.7(2), 409–414 (2007).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. L. Chueh, Z. Fan, K. Takei, H. Ko, R. Kapadia, A. A. Rathore, N. Miller, K. Yu, M. Wu, E. E. Haller, and A. Javey, “Black Ge based on crystalline/amorphous core/shell nanoneedle arrays,” Nano Lett.10(2), 520–523 (2010).
[CrossRef] [PubMed]

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Optical properties of crystalline-amorphous core-shell silicon nanowires,” Nano Lett.10(10), 4093–4098 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Controlled replication of butterfly wings for achieving tunable photonic properties,” Nano Lett.6(10), 2325–2331 (2006).
[CrossRef] [PubMed]

C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett.5(12), 2438–2442 (2005).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Y. Huang, X. D. Wang, and Z. L. Wang, “Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes,” Nanotechnology19(2), 025602 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Opt. Acta (Lond.) (1)

S. J. Wilson and M. C. Hutley, “The optical properties of 'Moth Eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Opt. Express (2)

Prog. Photovolt. Res. Appl. (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Pure Appl. Chem. (1)

X. Fang, L. Hu, C. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors,” Pure Appl. Chem.82(11), 2185–2198 (2010).
[CrossRef]

Other (2)

C. G. Someda, Electromagnetic Waves (Chapman & Hall, 1998).

P. Beckman and A. Spizzichno, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM image of the NWAs annealed for 3 hours at 900þC in air ambient. (b) TEM image of the 3-hour-annealed NWAs showing core-shell structure. (c) HRTEM image recorded at the interface area, indicated by the red rectangle in (b). (d) EDS analysis performed along the dashed line in (b).

Fig. 2
Fig. 2

(a) Total, (b) specular, and (c) diffuse reflectance measured on the polished Si surface, the NWAs without annealing process, the NWAs annealed for 1 hour (NWAs + 55-nm oxide), and the NWAs annealed for 3 hours (NWAs + 110-nm oxide).

Fig. 3
Fig. 3

Diffraction order ratio of polished Si surface, the NWAs without annealing process, the NWAs annealed for 1 hour (NWAs + 55-nm oxide), and the NWAs annealed for 3 hour (NWAs + 110-nm oxide) over the wavelength regions of 200~850 nm.

Fig. 4
Fig. 4

Total reflectance calculated by RCWA with the polished surface, the as-synthesized and the 3-hour-annealed NWAs. The measurement results are also presented for comparison.

Fig. 5
Fig. 5

Time-averaged and normalized TE electric field distribution, |Ez|, simulated by FDTD analysis with a) polished Si substrates, b) the as-synthesized NWAs, c) the NWAs annealed for 1 hour, d) the NWAs annealed for 3 hours. Wavelength: 650 nm.

Fig. 6
Fig. 6

(a) Specular reflectance as a function of AOI at 325 nm measured on the polished Si surface, the NWAs without annealing process, and the NWAs annealed for 1 hour (NWAs + 55-nm oxide) with TE- and TM-polarized light. (b) Specular reflectance as a function of AOI at 650 nm measured on the polished Si surface, the NWAs without annealing process, and the NWAs annealed for 3 hour (NWAs + 110-nm oxide) with TE- and TM-polarized light. (c) RTE/TM as a function of AOI at 325 nm on the polished Si surface, the NWAs without annealing process, and the NWAs annealed for 1 hour (NWAs + 55-nm oxide). (d) RTE/TM as a function of AOI at 650 nm on the polished Si surface, the NWAs without annealing process, and the NWAs annealed for 3 hour (NWAs + 110-nm oxide).

Metrics