Abstract

LEDs have changed the concept of illumination not only in an expectation of the highest electroluminance efficiency but also in tremendous chances for smart lighting applications. With a cluster mixing, many studies were addressed to strategically manipulate the chromaticity point, system efficiency and color rendering performance according to different operational purposes. In this paper, we add an additional thermal function to extend the operational thermal window of a pentachromatic R/G/B/A/CW light engine over a chromaticity from 2800K to 8000K. The proposed model is experimentally validated to offer a full operable range in ambient temperature (Ta = 10° to 100°C) associated with high color quality scale (above 85 points) as well as high luminous efficiency (above 100 lm/watt).

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt.49(24), 4670–4676 (2010).
    [CrossRef] [PubMed]
  2. G. He and L. Zheng, “White-light LED clusters with high color rendering,” Opt. Lett.35(17), 2955–2957 (2010).
    [CrossRef] [PubMed]
  3. M. C. Chien and C. H. Tien, “Cluster LEDs mixing optimization by lens design techniques,” Opt. Express19(S4Suppl 4), A804–A817 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-S4-A804 .
    [CrossRef] [PubMed]
  4. E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).
  5. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
    [CrossRef]
  6. S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
    [CrossRef]
  7. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
    [CrossRef]
  8. K. Man and I. Ashdown, “Accurate colorimetric feedback for RGB LED clusters,” Proc. SPIE6337, 633702, 633702-8 (2006).
    [CrossRef]
  9. F. Reifegerste and J. Lienig, “Modeling of the temperature and current dependence of LED spectra,” J. Light Vis. Environ.32(3), 288–294 (2008).
    [CrossRef]
  10. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
    [CrossRef]
  11. A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
    [CrossRef]
  12. Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE5530, 88–98 (2004).
    [CrossRef]
  13. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” J. Appl. Phys.85, 2163–2165 (2004).
  14. Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE5187, 107–114 (2004).
    [CrossRef]
  15. R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. (John Wiley, 2004).
  16. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt.45(10), 2265–2272 (2006).
    [CrossRef] [PubMed]
  17. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
    [CrossRef]
  18. Philips Lumileds Lighting Campany, Netherlands, LUXEON Rebel PC Amber Datasheet DS62 (2010).

2011

2010

G. He and L. Zheng, “Color temperature tunable white-light light-emitting diode clusters with high color rendering index,” Appl. Opt.49(24), 4670–4676 (2010).
[CrossRef] [PubMed]

G. He and L. Zheng, “White-light LED clusters with high color rendering,” Opt. Lett.35(17), 2955–2957 (2010).
[CrossRef] [PubMed]

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
[CrossRef]

2008

F. Reifegerste and J. Lienig, “Modeling of the temperature and current dependence of LED spectra,” J. Light Vis. Environ.32(3), 288–294 (2008).
[CrossRef]

2006

2005

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

2004

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE5530, 88–98 (2004).
[CrossRef]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” J. Appl. Phys.85, 2163–2165 (2004).

Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE5187, 107–114 (2004).
[CrossRef]

1999

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
[CrossRef]

Ashdown, I.

K. Man and I. Ashdown, “Accurate colorimetric feedback for RGB LED clusters,” Proc. SPIE6337, 633702, 633702-8 (2006).
[CrossRef]

Avendaño-Alejo, M.

Chhajed, S.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Chien, M. C.

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

Deconinck, G.

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

Gessmann, T.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Gu, Y.

Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE5187, 107–114 (2004).
[CrossRef]

Hanselaer, P.

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

He, G.

Keppens, A.

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

Li, Y. L.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Lienig, J.

F. Reifegerste and J. Lienig, “Modeling of the temperature and current dependence of LED spectra,” J. Light Vis. Environ.32(3), 288–294 (2008).
[CrossRef]

Man, K.

K. Man and I. Ashdown, “Accurate colorimetric feedback for RGB LED clusters,” Proc. SPIE6337, 633702, 633702-8 (2006).
[CrossRef]

Moreno, I.

Mukai, T.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
[CrossRef]

Nakamura, S.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
[CrossRef]

Narendran, N.

Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE5187, 107–114 (2004).
[CrossRef]

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE5530, 88–98 (2004).
[CrossRef]

Reifegerste, F.

F. Reifegerste and J. Lienig, “Modeling of the temperature and current dependence of LED spectra,” J. Light Vis. Environ.32(3), 288–294 (2008).
[CrossRef]

Ryckaert, W. R.

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

Schubert, E. F.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” J. Appl. Phys.85, 2163–2165 (2004).

Shur, M. S.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
[CrossRef]

Tien, C. H.

Tzonchev, R. I.

Vaicekauskas, R.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
[CrossRef]

Xi, Y.

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” J. Appl. Phys.85, 2163–2165 (2004).

Yamada, M.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
[CrossRef]

Zheng, L.

Žukauskas, A.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” J. Appl. Phys.85, 2163–2165 (2004).

A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high-power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys.108(4), 043104 (2010).
[CrossRef]

S. Chhajed, Y. Xi, Y. L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color rendering properties of trichromatic white light source based on light emitting diodes,” J. Appl. Phys.97(5), 054506 (2005).
[CrossRef]

J. Light Vis. Environ.

F. Reifegerste and J. Lienig, “Modeling of the temperature and current dependence of LED spectra,” J. Light Vis. Environ.32(3), 288–294 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

A. Žukauskas, R. Vaicekauskas, and M. S. Shur, “Colour-rendition properties of solid-state lamps,” J. Phys. D Appl. Phys.43(35), 354006 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(Part 1, No. 7A), 3976–3981 (1999).
[CrossRef]

Opt. Eng.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng.49(3), 033602 (2010).
[CrossRef]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng.44(11), 111302 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE5187, 107–114 (2004).
[CrossRef]

K. Man and I. Ashdown, “Accurate colorimetric feedback for RGB LED clusters,” Proc. SPIE6337, 633702, 633702-8 (2006).
[CrossRef]

Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE5530, 88–98 (2004).
[CrossRef]

Other

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. (John Wiley, 2004).

Philips Lumileds Lighting Campany, Netherlands, LUXEON Rebel PC Amber Datasheet DS62 (2010).

E. F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The illustration of double Gaussian model for green and phosphor LED spectra at Tj = 25°C and IDC = 350mA respectively. For the phosphor-converted LEDs, the blue and fluorescence components should be individually considered, thus decomposed into two double Gaussian functions GB + GB’ and GF + GF’, respectively. The numerical model Eqs. (3)(7) ensure a good approximation at arbitrary junction temperature Tj and drive current IDC.

Fig. 2
Fig. 2

The power spectra of red (λR: 625nm, ΔλR: 20nm), green (λG: 523nm, ΔλG: 33nm), blue (λB: 465nm, ΔλB: 25nm), amber (λA: 587nm, ΔλA: 18nm) and cool-white LEDs at Ta of 10°C with IDC of 350mA. The upper right figure shows a real-field test designed for CT = 5000K and the lower right one shows the utilized LEDs attached on the temperature controllable fixture respectively.

Fig. 3
Fig. 3

The temperature dependence of spectra designed for CT = 3200K, 4600K, 6200K, and 7400K at Ta = 50°C. The chromaticity point shifts toward higher color temperature with the raise of Ta owing to the dramatic deterioration in LEs of the red and amber LEDs.

Fig. 4
Fig. 4

The temperature dependence of LE for pentachromatic LEDs. When Ta is varied from 10 °C to 100 °C, LEs of amber and red AlInGaP LEDs decrease to 23% and 46% of that at 10 °C while LEs of InGaP LEDs are insensitive to temperature variation.

Fig. 5
Fig. 5

The LE contour of the pentachromatic LEDs cluster is performed under the predefined requirements (CQS > 85 points, lighting level = 100 lm and Δxy < 0.01). When the LE = 100 lm/W is selected as the minimum efficiency boundary, a full operation range for ambient temperature can be obtained for CT > 5200K.

Tables (1)

Tables Icon

Table 1 The Comparison of CQS, LE, Output Spectral Power P, Correlated Color Temperature CCT, Color Temperature CT and the Input Power Ratio Pin under Ta = 10°C, 50°C and 100°C

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T j T 2 T 1 V f ( T 2 ) V f ( T 1 ) [ V f V f ( T 1 )]+ T 1
R t = T j T a P e Φ
S ˜ =G+G'
g mn = p m exp{ [ λ n ( λ 0 ) m ] 2 /Δ λ m 2 }
argmin[ | s m s ˜ m | 2 , { p m , ( λ 0 ) m , Δ λ m , p ' m , ( λ 0 ') m , Δλ ' m }]
ln(p)= M p c p , λ 0 = M λ c λ , and ln(Δλ)= M Δλ c Δλ
S ˜ (λ)=G+G' =exp[ m p c p (λ m λ c λ ) 2 /exp ( m Δλ c Δλ ) 2 ] +exp[ m p c p ' (λ m λ c λ ') 2 /exp ( m Δλ c Δλ ') 2 ]
S ˜ W (λ)={ G B + G B ', for λ < λ BF G F + G F ', for λ> λ BF
ε ˜ =A S ˜ T l
ε ˜ = C T i DC
f=w×CQS+(1w)×LE, subject to w[0,1]

Metrics