Abstract

Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
    [CrossRef]
  2. S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
    [CrossRef] [PubMed]
  3. N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
    [CrossRef]
  4. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
    [CrossRef]
  5. M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
    [CrossRef]
  6. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond.203(359-371), 385–420 (1904).
    [CrossRef]
  7. H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
    [CrossRef]
  8. B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010).
    [CrossRef]
  9. W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997).
    [CrossRef]
  10. R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
    [CrossRef]
  11. M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
    [CrossRef]
  12. H. Fritzsche, Amorphous Silicon and Related Materials (World Scientific, Singapore, 1989), Vol. A.
  13. R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publishers, Boston, 1998).
  14. S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
    [CrossRef]
  15. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
    [CrossRef]
  16. R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, London, 1999).
  17. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
    [CrossRef]
  18. M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
    [CrossRef]
  19. S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988).
    [CrossRef] [PubMed]
  20. M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
    [CrossRef]
  21. S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).
  22. S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
    [CrossRef] [PubMed]
  23. K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

2010

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010).
[CrossRef]

2007

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

2006

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

2002

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

2000

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

1998

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

1997

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

1996

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

1995

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

1991

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

1990

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

1988

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988).
[CrossRef] [PubMed]

1983

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

1982

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

1978

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

1904

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond.203(359-371), 385–420 (1904).
[CrossRef]

Agarwal, S.

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

Aljishi, S.

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

Andersson, T.

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

Aydil, E. S.

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

Beck, N.

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

Bezemer, J.

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

Carius, R.

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Che, J.

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

Cho, W. Y.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Cohen, J. D.

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

De Geyter, B.

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010).
[CrossRef]

Dylla, T.

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

Fejfar, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

Finger, F.

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

Furukawa, S.

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988).
[CrossRef] [PubMed]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond.203(359-371), 385–420 (1904).
[CrossRef]

Granqvist, C.

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

Grebner, S.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Henrion, W.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Hens, Z.

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010).
[CrossRef]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Houben, L.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Hunderi, O.

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

Jiang, H. Q.

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

Jin, S.

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Jun, K. H.

K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

Kamba, S.

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

Klazes, R. H.

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

Klein, S.

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

Klomfass, J.

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

Kluth, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Kocka, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Koynov, S.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Kozisek, Z.

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Krankenhagen, R.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Lambertz, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Ley, L.

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

Lim, K. S.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Maroudas, D.

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

McMahon, T.

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

Meier, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

Miyasato, T.

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988).
[CrossRef] [PubMed]

Muck, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Nesladek, M.

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

Norrman, S.

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Poruba, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

Poschenrieder, M.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Radelaar, S.

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

Rech, B.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Remes, Z.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

Rosa, J.

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

Schmidt, M.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Schwarz, R.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Shah, A.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

Sieber, I.

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

Springer, J.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

Sriraman, S.

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

Stiebig, H.

K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

Stika, O.

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Stuchlik, J.

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Torres, P.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

Triska, A.

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

van den Broek, M. H. L. M.

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

Vanecek, M.

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Vetterl, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Vorlicek, V.

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

Wagner, H.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Wang, M. Q.

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Wyrsch, N.

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

Yao, X.

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

Appl. Phys. Lett.

B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010).
[CrossRef]

J. Appl. Phys.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000).
[CrossRef]

M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995).
[CrossRef]

S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).

J. Non-Cryst. Solids

M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000).
[CrossRef]

R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996).
[CrossRef]

M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998).
[CrossRef]

N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Mater. Res. Bull.

H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006).
[CrossRef]

Nature

S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002).
[CrossRef] [PubMed]

Philos. Mag. B

R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982).
[CrossRef]

Philos. Trans. R. Soc. Lond.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond.203(359-371), 385–420 (1904).
[CrossRef]

Phys. Rev. B

S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978).
[CrossRef]

K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

Phys. Rev. B Condens. Matter

S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990).
[CrossRef] [PubMed]

Sol. Energy Mater.

M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983).
[CrossRef]

Sol. Energy Mater. Sol. Cells

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Other

H. Fritzsche, Amorphous Silicon and Related Materials (World Scientific, Singapore, 1989), Vol. A.

R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publishers, Boston, 1998).

R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, London, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flow chart of the process.

Fig. 2
Fig. 2

Example of constructed DOS distributions of the a-Si with Nd 4 × 1017cm−3eV−1.

Fig. 3
Fig. 3

Absorption spectrum of a-Si with mobility gap 1.8eV and Nd 4 × 1017 cm−3eV−1.

Fig. 4
Fig. 4

Absorption spectra measured by CPM and the modeling curves fitted by the genetic algorithm for the eight samples. (a)XC = 41.2%, (B) XC = 42.5%, (c) XC = 53.4%, (d) XC = 56.7%, (e) XC = 57.4%, (f) XC = 58.5%, (g) XC = 60.8%, (h) XC = 63.4%.

Fig. 5
Fig. 5

Correlation between amorphous defects and crystalline volume fraction.

Fig. 6
Fig. 6

Correlation between scattering factor and crystalline volume fraction.

Tables (1)

Tables Icon

Table 1 Parameters of DOS Model

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α(hυ)= K hυ N i (E)f( E ) N f (E+hυ)[ 1f( E+hυ ) ]d(E) ,
N D (E)= N d exp( | E | 2 2 W 2 ),
N D = 0 E g N D (E)dE
4 π 2 D 2 15 λ 2 ( ε+4 )( ε+2 ) ( 2ε+3 ) 1
ε ˜ μc MG ( E )= ε ˜ a ( E ) ε ˜ C ( E )+2 ε ˜ a ( E )+2Xc[ ε ˜ C ( E ) ε ˜ a ( E ) ] ε ˜ C ( E )+2 ε ˜ a ( E )Xc[ ε ˜ C ( E ) ε ˜ a ( E ) ] ,
ε ˜ a ( E )=[ n aSi ( E ) 2 κ aSi ( E ) 2 ]+i[ 2 n aSi ( E ) κ aSi ( E ) ]
ε ˜ C ( E )=[ n CSi ( E ) 2 κ CSi ( E ) 2 ]+i[ 2 n CSi ( E ) κ CSi ( E ) ]
α μc MG ( E )= 4πE hc { [ ε μc Re ( E ) 2 + ε μc Im ( E ) 2 ] 1 2 ε μc Re ( E ) 2 } 1 2 ,

Metrics