Abstract

This paper reports the enhanced performance of dye-sensitized solar cells (DSSCs) with microcavity-embedded nanoporous TiO2 photoanodes. For DSSCs with photoanodes composed of a stack TiO2 sublayers with microcavity concentrations arranged from low to high on the light illumination path, the short-circuit current density and the conversion efficiency were improved. A pronounced increase in optical absorption and incident monochromatic photon-to-current conversion efficiency in the long-wavelength region indicated that the enhancement of cell performance was due to the multiple scattering of light by the microcavities and the light confinement by the stack of TiO2 sublayers with a high-to-low effective index of refraction.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film,” Nature353(6346), 737–740 (1991).
    [CrossRef]
  2. M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci.4(4), 314–321 (1999).
    [CrossRef]
  3. J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
    [CrossRef]
  4. J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
    [CrossRef]
  5. C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
    [CrossRef]
  6. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
    [CrossRef]
  7. C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
    [CrossRef]
  8. K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
    [CrossRef]
  9. E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
    [CrossRef] [PubMed]
  10. P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
    [CrossRef]
  11. S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
    [CrossRef]
  12. C.-Y. Kuo and S.-Y. Lu, “Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells,” Nanotechnology19(9), 095705 (2008).
    [CrossRef] [PubMed]
  13. M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
    [CrossRef]
  14. E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
    [CrossRef]
  15. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
    [CrossRef]
  16. C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
    [CrossRef]
  17. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
    [CrossRef]
  18. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
    [CrossRef]
  19. B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
    [CrossRef] [PubMed]
  20. L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
    [CrossRef] [PubMed]
  21. J. Z. Chen, Y.-C. Hsu, and I-C. Cheng, “Enhanced photoelectrochemical performance of photoanode fabricated using polystyrene ball embedded TiO2 pastes,” Electrochem. Solid-State Lett.14(1), B6–B8 (2011).
    [CrossRef]
  22. S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
    [CrossRef]
  23. L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
    [CrossRef]
  24. J. Y. Lee, S. Lee, J.-K. Park, Y. Jun, Y.-G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, “Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror,” Opt. Express18(S4), A522–A527 (2010).
    [CrossRef] [PubMed]
  25. S. Choi, E. N. Cho, S. M. Lee, Y. W. Kim, and D. W. Lee, “Evaluation of characteristics for dye-sensitized solar cell with reflector applied,” Opt. Express19(S4), A710–A715 (2011).
    [CrossRef] [PubMed]
  26. S. Choi, E. N. Cho, S. M. Lee, Y. W. Kim, and D. W. Lee, “Development of a high-efficiency laminated dye-sensitized solar cell with a condenser lens,” Opt. Express19(S4), A818–A823 (2011).
    [CrossRef] [PubMed]
  27. E. E. Underwood, “Applications of Quantitative Metallography,” in Metals Handbook vol. 8: Metallography, Structures and Phase Diagrams, T. Lyman, ed. (American Society for Metals, 1973), pp. 37–47.
  28. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
    [CrossRef]

2011

2010

J. Y. Lee, S. Lee, J.-K. Park, Y. Jun, Y.-G. Lee, K. M. Kim, J. H. Yun, and K. Y. Cho, “Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror,” Opt. Express18(S4), A522–A527 (2010).
[CrossRef] [PubMed]

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

2009

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
[CrossRef]

2008

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

C.-Y. Kuo and S.-Y. Lu, “Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells,” Nanotechnology19(9), 095705 (2008).
[CrossRef] [PubMed]

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

2007

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

2006

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[CrossRef] [PubMed]

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

2005

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

2002

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

1999

M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci.4(4), 314–321 (1999).
[CrossRef]

1997

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

1991

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film,” Nature353(6346), 737–740 (1991).
[CrossRef]

Arendse, F.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Barb, C. J.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Birnie, D. P.

L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
[CrossRef]

Charbonneau, C.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Charvet, R.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Chen, J.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Chen, J. Z.

J. Z. Chen, Y.-C. Hsu, and I-C. Cheng, “Enhanced photoelectrochemical performance of photoanode fabricated using polystyrene ball embedded TiO2 pastes,” Electrochem. Solid-State Lett.14(1), B6–B8 (2011).
[CrossRef]

Chen, S. H.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Cheng, I-C.

J. Z. Chen, Y.-C. Hsu, and I-C. Cheng, “Enhanced photoelectrochemical performance of photoanode fabricated using polystyrene ball embedded TiO2 pastes,” Electrochem. Solid-State Lett.14(1), B6–B8 (2011).
[CrossRef]

Chigane, M.

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

Cho, E. N.

Cho, K. Y.

Choi, S.

Comte, P.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Dai, S. Y.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Demopoulos, G. P.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Dionigi, C.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Ferber, J.

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

Gauvin, R.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Ghadiri, E.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

Gomez, M. A.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Gratzel, M.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Grätzel, M.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci.4(4), 314–321 (1999).
[CrossRef]

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film,” Nature353(6346), 737–740 (1991).
[CrossRef]

Hinsch, A.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

Ho, K.-C.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Hong, J.-M.

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Hore, S.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Hsu, C.-P.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Hsu, Y.-C.

J. Z. Chen, Y.-C. Hsu, and I-C. Cheng, “Enhanced photoelectrochemical performance of photoanode fabricated using polystyrene ball embedded TiO2 pastes,” Electrochem. Solid-State Lett.14(1), B6–B8 (2011).
[CrossRef]

Hu, L. H.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Huang, J. T.-W.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Huang, Y.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Humphry-Baker, R.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Ito, S.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Izaki, M.

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

Jang, S. R.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

Jirousek, M.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Jun, Y.

Kern, R.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

Kim, D.-Y.

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

Kim, H.-G.

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Kim, I.-D.

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Kim, J.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Kim, K. J.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

Kim, K. M.

Kim, S.-S.

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

Kim, Y. W.

Kong, F. T.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Kuo, C.-Y.

C.-Y. Kuo and S.-Y. Lu, “Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells,” Nanotechnology19(9), 095705 (2008).
[CrossRef] [PubMed]

Kwak, E. S.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

Lee, C.-H.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Lee, D. W.

Lee, H.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Lee, J.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

Lee, J. Y.

Lee, K. E.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Lee, K.-M.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Lee, S.

Lee, S. M.

Lee, W.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

Lee, Y.-G.

Lenzmann, F.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Li, K.

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

Li, X.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Li, Y.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Liang, L. Y.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Lin, C.-Y.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Lin, Y.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Liska, P.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Liu, P.

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

Lu, S.-Y.

C.-Y. Kuo and S.-Y. Lu, “Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells,” Nanotechnology19(9), 095705 (2008).
[CrossRef] [PubMed]

Luther, J.

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

Miura, H.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Moser, J.-E.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

Murgia, M.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Nazeeruddin, M. K.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Niggemann, M.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Nitz, P.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Nozar, P.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

O’Regan, B.

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film,” Nature353(6346), 737–740 (1991).
[CrossRef]

Palles, D.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Pan, X.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Park, J.-K.

Park, N.-G.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

Péchy, P.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Prahl, C.

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Qi, L.

L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
[CrossRef]

Ruani, G.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Sastrawan, R.

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

Shan, G. B.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

Shinagawa, T.

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

Shklover, V.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

Smit, H.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

Somani, P. R.

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Sorge, J. D.

L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
[CrossRef]

Stangl, R.

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

Sui, Y. F.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Sun, Y.

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

Sung, Y.-E.

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

Taghavinia, N.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

Takata, M.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Tan, B.

B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[CrossRef] [PubMed]

Tsai, S.-Y.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Uchida, S.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Vetter, C.

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Vittal, R.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

Wang, K. J.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Wang, L.-P.

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

Wang, Y.

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

Watanabe, M.

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

Weng, J.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Will, G.

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

Wu, Y. Y.

B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[CrossRef] [PubMed]

Xiao, S. F.

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Xiao, X.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Yamaguchi, I.

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

Yang, D.-J.

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Yang, S.-C.

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Yoon, J. H.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

Yu, H.

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

Yuan, C.

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

Yum, J.-H.

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

Yun, J. H.

Zakeeruddin, S. M.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Zhang, J.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Zhang, S.

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

Zhao, H.

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

Zhou, X.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Zou, Y.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Adv. Funct. Mater.

E. S. Kwak, W. Lee, N.-G. Park, J. Kim, and H. Lee, “Compact inverse-opal electrode using non-aggregated TiO2 nanoparticles for dye-sensitized solar cells,” Adv. Funct. Mater.19(7), 1093–1099 (2009).
[CrossRef]

Adv. Mater.

S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Adv. Mater.18(9), 1202–1205 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

S.-C. Yang, D.-J. Yang, J. Kim, J.-M. Hong, H.-G. Kim, I.-D. Kim, and H. Lee, “Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensited solar cells,” Adv. Mater. (Deerfield Beach Fla.)20(5), 1059–1064 (2008).
[CrossRef]

Chem. Commun. (Camb.)

S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, “Scattering spherical voids in nanocrystalline TiO2 – enhancement of efficieny in dye-sensitized solar cells,” Chem. Commun. (Camb.)41(15), 2011–2013 (2005).
[CrossRef]

Chem. Phys. Lett.

J. Chen, Y. Zou, Y. Li, X. Zhou, J. Zhang, X. Li, X. Xiao, and Y. Lin, “Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles,” Chem. Phys. Lett.460(1–3), 168–172 (2008).
[CrossRef]

Curr. Opin. Colloid Interface Sci.

M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells,” Curr. Opin. Colloid Interface Sci.4(4), 314–321 (1999).
[CrossRef]

Electrochem. Solid-State Lett.

C. Charbonneau, K. E. Lee, G. B. Shan, M. A. Gomez, R. Gauvin, and G. P. Demopoulos, “Preparation and DSSC performance of mesoporous film photoanodes based on aqueous-synthesized anatase nanocrystallites,” Electrochem. Solid-State Lett.13(8), H257–H260 (2010).
[CrossRef]

M. Chigane, M. Watanabe, M. Izaki, I. Yamaguchi, and T. Shinagawa, “Preparation of hollow titanium dioxide shell thin films by electrophoresis and electrolysis for dye-sensitized solar cells,” Electrochem. Solid-State Lett.12(5), E5–E8 (2009).
[CrossRef]

J. Z. Chen, Y.-C. Hsu, and I-C. Cheng, “Enhanced photoelectrochemical performance of photoanode fabricated using polystyrene ball embedded TiO2 pastes,” Electrochem. Solid-State Lett.14(1), B6–B8 (2011).
[CrossRef]

Electrochim. Acta

R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochim. Acta47(26), 4213–4225 (2002).
[CrossRef]

C.-P. Hsu, K.-M. Lee, J. T.-W. Huang, C.-Y. Lin, C.-H. Lee, L.-P. Wang, S.-Y. Tsai, and K.-C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochim. Acta53(25), 7514–7522 (2008).
[CrossRef]

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, “An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells,” Electrochim. Acta54(4), 1319–1324 (2009).
[CrossRef]

J. Am. Ceram. Soc.

C. J. BarbéF. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc.80(12), 3157–3171 (1997).
[CrossRef]

L. Qi, J. D. Sorge, and D. P. Birnie, “Dye-sensitized solar cells based on TiO2 coatings with dual size-scale porosity,” J. Am. Ceram. Soc.92(9), 1921–1925 (2009).
[CrossRef]

J. Photochem. Photobiol., A

J.-H. Yum, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, “Electrophoretically deposited TiO2 photo-electrodes for use in flexible dye-sensitized solar cells,” J. Photochem. Photobiol., A173(1), 1–6 (2005).
[CrossRef]

J. Photochem. Photobiol., A.

J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells,” J. Photochem. Photobiol., A.180(1–2), 184–188 (2006).
[CrossRef]

J. Phys. Chem. B

B. Tan and Y. Y. Wu, “Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites,” J. Phys. Chem. B110(32), 15932–15938 (2006).
[CrossRef] [PubMed]

L. H. Hu, S. Y. Dai, J. Weng, S. F. Xiao, Y. F. Sui, Y. Huang, S. H. Chen, F. T. Kong, X. Pan, L. Y. Liang, and K. J. Wang, “Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules,” J. Phys. Chem. B111(2), 358–362 (2007).
[CrossRef] [PubMed]

Mater. Sci. Eng. B

K. Li, Y. Wang, Y. Sun, and C. Yuan, “Preparation of nanocrystalline TiO2 electrode by layer-by-layer screen printing and its application in dye-sensitized solar cell,” Mater. Sci. Eng. B175(1), 44–47 (2010).
[CrossRef]

Nano Lett.

E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers,” Nano Lett.10(5), 1632–1638 (2010).
[CrossRef] [PubMed]

Nanotechnology

C.-Y. Kuo and S.-Y. Lu, “Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells,” Nanotechnology19(9), 095705 (2008).
[CrossRef] [PubMed]

Nature

B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film,” Nature353(6346), 737–740 (1991).
[CrossRef]

Opt. Express

Sol. Energy Mater. Sol. Cells

S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells90(9), 1176–1188 (2006).
[CrossRef]

P. R. Somani, C. Dionigi, M. Murgia, D. Palles, P. Nozar, and G. Ruani, “Solid-state dye PV cells using inverse opal TiO2 films,” Sol. Energy Mater. Sol. Cells87(1–4), 513–519 (2005).
[CrossRef]

Other

E. E. Underwood, “Applications of Quantitative Metallography,” in Metals Handbook vol. 8: Metallography, Structures and Phase Diagrams, T. Lyman, ed. (American Society for Metals, 1973), pp. 37–47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic cross sections of the studied TiO2 photoelectrode structures: (a) monolayer structure of 12 μm in thickness, (b) bilayer structure with first layer of 8 μm and second layer of 4 μm in thickness, (c) trilayer structure with first, second, and third layers of 4 μm in thickness each.

Fig. 2
Fig. 2

Scanning electron micrographs of TiO2 photoanodes made using (a) 2 wt.% 1 μm, (b) 2 wt.% 2 μm, (c) 2 wt.% 3 μm, (d) 2 wt.% 2 μm, (e) 5 wt.% 2 μm, and (f) 10 wt.% 2 μm PS microspheres diluted in DI water.

Fig. 3
Fig. 3

Conversion efficiency of DSSCs made with photoelectrodes in a monolayer structure as a function of PS microsphere concentration in DI water.

Fig. 4
Fig. 4

Optical absorption spectra of dye-adsorbed monolayer photoanodes made with 2 wt.% PS microspheres of various sizes (1 μm, 2 μm, and 3 μm in diameter) and without the application of PS balls during sintering.

Fig. 5
Fig. 5

IPCE spectra of the DSSCs made using TiO2 pastes mixed with 2 wt.% 2 μm PS microspheres diluted in DI water and without the application of PS microspheres.

Fig. 6
Fig. 6

Optical absorption spectra of dye-adsorbed bilayer photoanodes made with the first layers using TiO2 paste mixed with (a) 2 wt.%, (b) 5 wt.% and (c) 10 wt.% PS microspheres diluted in DI water. The size of the PS microspheres was 2 μm in diameter.

Fig. 7
Fig. 7

Optical absorption spectra of dye-adsorbed trilayer photoanodes made with sublayers using TiO2 paste mixed with (2 wt.%, 5 wt.%, 10 wt.%) and (10 wt.%, 5 wt.%, 2 wt.%) PS microspheres diluted in DI water. The size of the PS microspheres was 2 μm in diameter.

Fig. 8
Fig. 8

Electrochemical impedance spectra of DSSCs with photoanodes made using TiO2 paste mixed with (2 wt.%, 2 wt.%, 2 wt.%), (2 wt.%, 5 wt.%, 10 wt.%), (10 wt.%, 5 wt.%, 2 wt.%) 2 μm PS microspheres diluted in DI water and made without the application of PS microspheres. The equivalent circuit of this study is shown in the inset.

Fig. 9
Fig. 9

Current density–voltage characteristics of DSSCs with TiO2 photoanodes in a monolayer structure, a bilayer structure, and a trilayer structure under AM 1.5 illumination. The diameter of PS microspheres in the TiO2 paste was 2 μm.

Tables (3)

Tables Icon

Table 1 Comparison of the cell parameters of DSSCs made without and with PS microspheres of various sizes and concentrations.

Tables Icon

Table 2 Comparison of the cell parameters of DSSCs with photoanodes in a bilayer structure. The diameter of PS microspheres in the TiO2 paste was 2 μm. Enhanced conversion efficiency was observed in DSSCs with photoanodes in a bilayer structure when the PS microsphere concentration of the first layer was lower than that of the second layer.

Tables Icon

Table 3 Comparison of the cell parameters of DSSCs with photoanodes in a trilayer structure. The diameter of PS microspheres in the TiO2 paste was 2 μm. Enhanced conversion efficiency was observed in DSSCs with photoanodes in a trilayer structure when the PS microsphere concentration was varied from low to high.

Metrics