Abstract

Large-area, periodic Si nanopillar arrays (NPAs) with the periodicity of 100 nm and the diameter of 60 nm were fabricated by metal-assisted chemical etching with anodic aluminum oxide as a patterning mask. The 100-nm-periodicity NPAs serve an antireflection function especially at the wavelengths of 200~400 nm, where the reflectance is decreased to be almost tenth of the value of the polished Si (from 62.9% to 7.9%). These NPAs show very low reflectance for broadband wavelengths and omnidirectional light incidence, attributed to the small periodicity and the stepped refractive index of NPA layers. The experimental results are confirmed by theoretical calculations. Raman scattering intensity was also found to be significantly increased with Si NPAs. The introduction of this industrial-scale self-assembly methodology for light harvesting greatly advances the development of Si-based optical devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005).
    [CrossRef]
  2. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
    [CrossRef]
  3. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
    [CrossRef]
  4. J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
    [CrossRef]
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
    [PubMed]
  6. J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
    [CrossRef]
  7. L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
    [CrossRef]
  8. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
    [CrossRef] [PubMed]
  9. Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
    [CrossRef] [PubMed]
  10. C. X. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  11. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
    [CrossRef]
  12. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  13. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
    [CrossRef]
  14. Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
    [CrossRef]
  15. P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  16. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
    [CrossRef]
  17. W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
    [CrossRef] [PubMed]
  18. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
    [CrossRef]
  19. Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
    [CrossRef] [PubMed]
  20. H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
    [CrossRef] [PubMed]
  21. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
    [CrossRef] [PubMed]
  22. W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
    [CrossRef]
  23. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
    [CrossRef] [PubMed]
  24. Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
    [CrossRef]
  25. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  26. C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
    [CrossRef]
  27. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
    [CrossRef]
  28. Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
    [CrossRef] [PubMed]
  29. X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000).
    [CrossRef]
  30. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
    [CrossRef]
  31. K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
    [CrossRef] [PubMed]
  32. S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [CrossRef]
  33. P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
    [CrossRef] [PubMed]
  34. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
    [CrossRef]
  35. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
    [CrossRef]
  36. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
    [CrossRef] [PubMed]
  37. M. Born and E. Wolf, “Principles of optics,” (Cambridge University Press, 1999), sec. 8.6.1, Eq. (8).
  38. H. A. Haus, “Waves and fields in optoelectronics,” (Prentice-Hall, Englewood Cliffs, NJ, 1984)
  39. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  40. L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
    [CrossRef] [PubMed]
  41. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
    [CrossRef]

2011 (2)

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

2010 (9)

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

2009 (5)

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

C. X. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

2008 (5)

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

2006 (4)

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

2005 (1)

J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005).
[CrossRef]

2003 (2)

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

2000 (4)

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000).
[CrossRef]

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

1999 (1)

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

1998 (1)

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1984 (1)

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

1973 (1)

P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Ahmed, N.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Algra, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Arens, W.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Aspnes, D. E.

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Azeredo, B. P.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Bakkers, E.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

Bakkers, E. P.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Bando, Y.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Beneking, C.

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

Bernitzki, H.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Bhatt, K.

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

Birner, A.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Bohn, P. W.

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000).
[CrossRef]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Burkhard, G. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Chambon, P.

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Chang, H. C.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

Chang, J. Y.

Chao, Y. C.

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

Chen, C. Y.

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

Chern, W.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Chhajed, S.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

Choi, J. M.

J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005).
[CrossRef]

Chueh, Y. L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Chun, I. S.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Chung, R. J.

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Connor, S. T.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Dai, Y. A.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

Erman, M.

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Fan, P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S. H.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Fan, S. S.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Fan, Z.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Fang, H.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Fang, N.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Fang, X. S.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Ferreira, P.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Friend, R. H.

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

Fujii, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Golberg, D.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Gösele, U.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

He, J. H.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

Ho, P. K. H.

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

Hsu, C. M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Hsu, K.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Hu, J. J.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Huang, C. F.

Huang, Z. P.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Im, S.

J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005).
[CrossRef]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Kaiser, N.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Kalkan, A. K.

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Karumuri, S.

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

Kelso, S. M.

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Kim, J. K.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

Kim, K. H.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Kurz, H.

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

Kwong, D. L.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lai, K. Y.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Lauth, H.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Lee, C. S.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Lee, S. T.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Lee, W.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Lee, Y. C.

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Li, A. P.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Li, J. S.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Li, L.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Li, X.

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000).
[CrossRef]

Li, X. C.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Li, X. L.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Lifshitz, Y.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Lin, C. A.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

Lin, C. X.

Lin, G. R.

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

Lin, Y. R.

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

Liu, C. H.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Liu, L. F.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Lo, P. G. Q.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Mann, K. R.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

McGehee, M.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Meng, X. M.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Mertin, M.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Muller, F.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Nabet, B.

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Nielsch, K.

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

Nositschka, W. A.

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Pan, Z. W.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Peng, H. Y.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Peng, K. Q.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Povinelli, M. L.

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Reiche, M.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Richards, B. S.

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Ristau, D.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Schubert, E. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

Schubert, M. F.

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Senz, S.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Shang, N. G.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Shi, W. S.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Shimizu, T.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Spanier, J. E.

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Tan, S.

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

Tessler, N.

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

Theeten, J. B.

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Thielsch, R.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Thomas, D. S.

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Ullmann, J.

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

Voigt, O.

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

Wang, H. H.

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

Wang, H. P.

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

Wang, N.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Wang, Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Wong, S. M.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Wu, M.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Wu, M. L.

Wu, Y.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Xu, Y.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Xu, Y. Q.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Yan, Y. J.

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Yang, P.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

Yao, Y.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Yu, H. Y.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Yu, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Yu, Z. F.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

Zapien, J. A.

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

Zeng, H. B.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Zhai, T. Y.

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Zhang, G.

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Zhang, X. X.

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Zheng, Y. F.

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Zhu, J.

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Zuo, J. M.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003).
[CrossRef]

S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009).
[CrossRef]

W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000).
[CrossRef]

H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006).
[CrossRef]

S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008).
[CrossRef]

J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005).
[CrossRef]

Energy Environ. Sci. (2)

Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011).
[CrossRef]

H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011).
[CrossRef]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998).
[CrossRef]

M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984).
[CrossRef]

Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010).
[CrossRef]

Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010).
[CrossRef]

Langmuir (1)

H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010).
[CrossRef] [PubMed]

Nano Lett. (7)

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010).
[CrossRef] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009).
[CrossRef] [PubMed]

Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000).
[CrossRef]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Nature (1)

P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Acta (Lond.) (1)

S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Science (2)

P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999).
[CrossRef] [PubMed]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Other (2)

M. Born and E. Wolf, “Principles of optics,” (Cambridge University Press, 1999), sec. 8.6.1, Eq. (8).

H. A. Haus, “Waves and fields in optoelectronics,” (Prentice-Hall, Englewood Cliffs, NJ, 1984)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The flowchart of experimental process for fabricating periodic Si NPAs. (b)-(e) SEM images of the corresponding experimental procedures.

Fig. 2
Fig. 2

(a) Total reflectance (b) specular reflectance (c) diffuse reflectance and (d) diffusion order ratio of polished Si and Si NPAs over the wavelength regions of 200~850 nm.

Fig. 3
Fig. 3

The time-averaged, normalized TE electric field distribution (|E|) of polished Si and Si NWAs simulated by FDTD analysis with the wavelength of 250 nm.

Fig. 4
Fig. 4

Optical properties of Si NWAs with 100 and 500 nm in Λ simulated by RCWA analysis with TE-polarized waves.

Fig. 5
Fig. 5

Specular reflectance as a function of AOI for unpolarized light with the wavelength of 250 nm.

Fig. 6
Fig. 6

Raman spectra of the Si NPAs and the polished Si.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n t sin θ m n i sin θ i = mλ Λ

Metrics