Abstract

This experiment demonstrates the process for manufacturing a ZnO honeycomb sub-wavelength structure using nanosphere lithography technology exhibiting excellent anti-reflection properties from the UV to NIR wavelength regions. This honeycomb nanostructure, combined with commercially available crystalline Si solar cells, show substantially improved conversion efficiency from 15.6% to 16.6% using optimized honeycomb sizes and precursor concentrations of ZnO. The present work develops an unsophisticated and economical technique suitable for industrial applications in producing a uniform and low-reflective texture.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals

Peter Bermel, Chiyan Luo, Lirong Zeng, Lionel C. Kimerling, and John D. Joannopoulos
Opt. Express 15(25) 16986-17000 (2007)

Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells

Darin Madzharov, Rahul Dewan, and Dietmar Knipp
Opt. Express 19(S2) A95-A107 (2011)

Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts

Ujwol Palanchoke, Vladislav Jovanov, Henning Kurz, Philipp Obermeyer, Helmut Stiebig, and Dietmar Knipp
Opt. Express 20(6) 6340-6347 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
    [Crossref] [PubMed]
  2. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
    [Crossref]
  3. H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
    [Crossref] [PubMed]
  4. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
    [Crossref]
  5. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [Crossref]
  6. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
    [Crossref]
  7. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
    [Crossref]
  8. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [Crossref] [PubMed]
  9. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
    [Crossref] [PubMed]
  10. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. C. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
    [Crossref] [PubMed]
  11. C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
    [Crossref]
  12. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
    [Crossref]
  13. J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
    [Crossref]
  14. H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
    [Crossref]
  15. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
    [Crossref]
  16. E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).
  17. X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
    [Crossref]
  18. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
    [Crossref] [PubMed]
  19. B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
    [Crossref]
  20. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [Crossref]
  21. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [Crossref]
  22. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [Crossref]
  23. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  24. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [Crossref]
  25. Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
    [Crossref] [PubMed]
  26. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
    [Crossref]
  27. D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
    [Crossref]
  28. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
    [Crossref] [PubMed]
  29. Structural Colors in Biological Systems, Principles and Applications, eds. S. Kinoshita and S. Yoshioka (Osaka University Press, 2005).
  30. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244(5414), 281–282 (1973).
    [Crossref]
  31. Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
    [Crossref]

2011 (3)

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

2010 (7)

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. C. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
[Crossref] [PubMed]

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[Crossref]

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

2009 (2)

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

2007 (4)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

2005 (3)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

2004 (2)

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
[Crossref] [PubMed]

2003 (1)

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

1999 (2)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

1998 (1)

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

1995 (1)

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Alim, K. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

Altermatt, P.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

Arimoto, S.

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

Babarada, F.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Balandin, A. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

Bang, J.

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Budianu, E.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Cernica, I.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Chan, W. K.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Chang, C. H.

Chang, F. Y.

Chang, W. L.

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, J. Y.

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[Crossref]

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Chiu, M. Y.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Ding, J.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Djurišic, A. B.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Einaga, Y.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Fan, T.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Ferrazza, F.

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Fonoberov, V. A.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

Fujishima, A.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Goldberger, J.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

Greene, L. E.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Guo, Q.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Han, K.-S.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Han, T.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

He, J. L.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Huang, C. K.

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Jang, S.

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Jen, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Jiang, L.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Johnson, J. C.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Joo, W.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Kim, B.

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Kim, D.

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Kim, F.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Kim, H. J.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Kim, J.

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Kim, J. K.

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Kwong, D.-L.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Lalatonne, Y.

Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
[Crossref] [PubMed]

Law, M.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Lee, H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Leung, Y. H.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Li, D.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Li, J.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Li, X.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Li, Y.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Lin, H. H.

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Liu, Z. T.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Liu, Z. Y.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Maddalena, P.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Manea, E.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Matsuno, S.

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

Mlynek, J.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Morikawa, H.

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

Murakami, T.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Niinobe, D.

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

Nishimoto, S.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Nishimura, K.

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

Ogawa, H.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Parretta, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Parvulescu, C. C.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Pileni, M. P.

Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
[Crossref] [PubMed]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Podaru, C.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Popescu, A.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Purica, M.

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Richardi, J.

Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
[Crossref] [PubMed]

Sarno, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Sato, O.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Saykally, R. J.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Schaffer, E.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Shamsa, M.

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

Shi, S. L.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Shin, J.-H.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Steiner, U.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

Sun, K. W.

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express 19(15), 14411–14419 (2011).
[Crossref] [PubMed]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[Crossref]

Sun, X.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Taguchi, M.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Tortora, P.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, M. A.

Walheim, S.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Wang, A.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

Wang, A. H.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Wong, S. M.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Xie, M. H.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Xu, S. J.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

Yakubu, H.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Yang, P.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Yoon, W.-Y.

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Yu, H.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Yu, P. C.

Zhai, J.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Zhang, D.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Zhang, G.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Zhang, X. T.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Zhang, X.-T.

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Zhang, Y.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

Zhao, J. H.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

Zhao, Y.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Zhou, H.

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Zhu, D. B.

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003).
[Crossref] [PubMed]

Appl. Catal. B (1)

Y. Zhao, X. T. Zhang, J. Zhai, J. L. He, L. Jiang, Z. Y. Liu, S. Nishimoto, T. Murakami, A. Fujishima, and D. B. Zhu, “Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films,” Appl. Catal. B 83(1-2), 24–29 (2008).
[Crossref]

Appl. Phys. Lett. (7)

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett. 85(9), 1601–1603 (2004).
[Crossref]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[Crossref]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[Crossref]

J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73(14), 1991–1993 (1998).
[Crossref]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Chem. Mater. (1)

X.-T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, “Self-cleaning particle coating with antireflection properties,” Chem. Mater. 17(3), 696–700 (2005).
[Crossref]

Curr. Appl. Phys. (1)

H. Morikawa, D. Niinobe, K. Nishimura, S. Matsuno, and S. Arimoto, “Processes for over 18.5% high-efficiency multi-crystalline silicon solar cell,” Curr. Appl. Phys. 10(2), S210–S214 (2010).
[Crossref]

J. Appl. Phys. (3)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys. 97(12), 124313 (2005).
[Crossref]

Langmuir (1)

W. Joo, H. J. Kim, and J. K. Kim, “Broadband antireflection coating covering from visible to near infrared wavelengths by using multilayered nanoporous block copolymer films,” Langmuir 26(7), 5110–5114 (2010).
[Crossref] [PubMed]

Mater. Sci. Eng. Rep. (1)

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010).
[Crossref]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Nanotechnology (1)

H. Zhou, T. Fan, T. Han, X. Li, J. Ding, D. Zhang, Q. Guo, and H. Ogawa, “Bacteria-based controlled assembly of metal chalcogenide hollow nanostructures with enhanced light-harvesting and photocatalytic properties,” Nanotechnology 20(8), 085603 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nat. Mater. 3(2), 121–125 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[Crossref] [PubMed]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Opt. Commun. (1)

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. H. Zhao, and A. H. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Opt. Express (2)

Rom. J. Inform. Sci. Technol (1)

E. Manea, E. Budianu, M. Purica, C. Podaru, A. Popescu, I. Cernica, F. Babarada, and C. C. Parvulescu, “SnO2 thin films prepared by sol gel method for ‘Honeycomb’ textured silicon solar cells,” Rom. J. Inform. Sci. Technol 10, 25–33 (2007).

Science (1)

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

C. K. Huang, H. H. Lin, J. Y. Chen, K. W. Sun, and W. L. Chang, “Efficiency enhancement of the poly-silicon solar cell using self-assembled dielectric nanoparticles,” Sol. Energy Mater. Sol. Cells 95(8), 2540–2544 (2011).
[Crossref]

K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells 95(1), 288–291 (2011).
[Crossref]

J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010).
[Crossref]

Thin Solid Films (1)

B. Kim, J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films 518(22), 6583–6586 (2010).
[Crossref]

Other (1)

Structural Colors in Biological Systems, Principles and Applications, eds. S. Kinoshita and S. Yoshioka (Osaka University Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematics of the fabrication processes for the 3D nano-scale honeycomb structures on micro-scale texture.

Fig. 2
Fig. 2

SEM image of the NHSL on the textured solar cell surface. The inset shows the enlarged image.

Fig. 3
Fig. 3

Nonresonant Raman spectrum of NHSL excited with a laser at 488 nm and a power of 50 mW.

Fig. 4
Fig. 4

The EDS results of ZnO NHSL. The inset gives the XRD pattern.

Fig. 5
Fig. 5

Reflectance spectra at maximum performance of solar cells integrated with NHSL with PS nanoparticle sizes of (a) 100 nm, (b) 250 nm and (c) 500 nm at different precursor concentrations of ZnO. The spectrum of an untreated device is also presented in parallel for comparison.

Fig. 6
Fig. 6

FESEM images of ZnO NHSL on c-Si solar cell prepared with PS nanoparticles with sizes of (a) 100 nm, (b) 250 nm, and (c) 500 nm.

Fig. 7
Fig. 7

Gains in conversion efficiency and current density of c-Si solar cells after optimization of NHSL pore sizes and precursor concentrations of ZnO.

Fig. 8
Fig. 8

J-V characteristics of the optimized solar cells integrated with the NHSL in compared to devices without the NHSL.

Fig. 9
Fig. 9

External quantum efficiency at maximum performance measured under AM 1.5 G illumination for solar cells integrated with NHSL for PS nanoparticle sizes of 100, 250, 500 nm. Results from an untreated device is also displayed in parallel for comparison.

Metrics