Abstract

In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
    [CrossRef]
  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
    [CrossRef]
  3. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
    [CrossRef]
  4. S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18(S1), A73–A78 (2010).
    [CrossRef]
  5. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
    [CrossRef]
  6. A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys.13(5), 839–846 (1980).
    [CrossRef]
  7. C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
    [CrossRef]
  8. G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994).
    [CrossRef]
  9. A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996).
    [CrossRef]
  10. A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002).
    [CrossRef]
  11. A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
    [CrossRef]
  12. I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002).
    [CrossRef]
  13. S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
    [CrossRef]
  14. E. D. Jackson, “Areas for improvement of the semiconductor solar energy converter,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona Press, 1955), p. 122.
  15. R. L. Moon, L. W. James, H. A. Vander Plas, T. O. Yep, G. A. Antypas, and Y. Chai, “Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight,” in 13th Photovoltaic Specialists Conference (IEEE, 1978), pp. 859–867.
  16. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
    [CrossRef]
  17. M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010).
    [CrossRef]
  18. R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films398–399, 1–9 (2001).
    [CrossRef]
  19. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1999).
  20. L. Y. Chen and D. W. Lynch, “Scanning ellipsometer by rotating polarizer and analyzer,” Appl. Opt.26(24), 5221–5228 (1987).
    [CrossRef] [PubMed]
  21. D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987).
    [CrossRef]

2010 (2)

M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010).
[CrossRef]

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18(S1), A73–A78 (2010).
[CrossRef]

2009 (2)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

2008 (2)

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

2007 (1)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

2002 (2)

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002).
[CrossRef]

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002).
[CrossRef]

2001 (1)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films398–399, 1–9 (2001).
[CrossRef]

1997 (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

1996 (1)

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996).
[CrossRef]

1994 (1)

G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994).
[CrossRef]

1987 (2)

D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987).
[CrossRef]

L. Y. Chen and D. W. Lynch, “Scanning ellipsometer by rotating polarizer and analyzer,” Appl. Opt.26(24), 5221–5228 (1987).
[CrossRef] [PubMed]

1980 (2)

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys.13(5), 839–846 (1980).
[CrossRef]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Aiken, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Araujo, G. L.

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996).
[CrossRef]

Araújo, G. L.

G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994).
[CrossRef]

Barnett, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Bett, A. W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Bortz, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Bowden, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Brown, A. S.

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002).
[CrossRef]

Buelow, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Carlson, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Chan, D. S. H.

D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987).
[CrossRef]

Chen, L. Y.

Christensen, E.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Davenport, T.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Dimroth, F.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Doolittle, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Duda, A.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Edmondson, K. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Emery, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Ferguson, I.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Fetzer, C. M.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Friedman, D. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Geisz, J.

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18(S1), A73–A78 (2010).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

Geisz, J. F.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Goossen, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Gray, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Gray, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Green, M. A.

M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010).
[CrossRef]

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002).
[CrossRef]

Guter, W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Henry, C. H.

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

Ho-Baillie, A.

M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010).
[CrossRef]

Honsberg, C.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Jani, O.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Jones, K. M.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Karam, N. H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Kazmerski, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Kiamilev, F.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Kiehl, J. T.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

King, R. R.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Kinsey, G. S.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Kirkpatrick, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Kurtz, S.

S. Kurtz and J. Geisz, “Multijunction solar cells for conversion of concentrated sunlight to electricity,” Opt. Express18(S1), A73–A78 (2010).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

Law, D. C.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Luque, A.

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002).
[CrossRef]

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Lynch, D. W.

Marti, A.

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994).
[CrossRef]

Martí, A.

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996).
[CrossRef]

McMahon, W. E.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

Moore, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Moriarty, T. E.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Myers, D.

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

Norman, A. G.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Olavarria, W. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Oliva, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Phang, J. C. H.

D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Romero, M. J.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Salzman, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Schmidt, G.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Schöne, J.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Schwartz, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Shatz, N.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Sherif, R. A.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

Siefer, G.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Steiner, M.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

Takacs, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Tobías, I.

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002).
[CrossRef]

Unger, B.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Vos, A. D.

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys.13(5), 839–846 (1980).
[CrossRef]

Wanlass, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

Ward, J. S.

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Willey, R. R.

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films398–399, 1–9 (2001).
[CrossRef]

Yoon, H.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett.90(18), 183516 (2007).
[CrossRef]

J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independentlymetamorphic junctions,” Appl. Phys. Lett.93(12), 123505 (2008).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

IEEE Trans. Electron. Devices (1)

D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Electron. Devices34(2), 286–293 (1987).
[CrossRef]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961).
[CrossRef]

C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” J. Appl. Phys.51(8), 4494–4500 (1980).
[CrossRef]

J. Phys. D. Appl. Phys. (1)

A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. D. Appl. Phys.13(5), 839–846 (1980).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

A. Luque and A. Marti, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett.78(26), 5014–5017 (1997).
[CrossRef]

Prog. Photovolt. Res. Appl. (5)

I. Tobías and A. Luque, “Ideal efficiency of monolithic, series-connected multijunction solar cells,” Prog. Photovolt. Res. Appl.10, 323–329 (2002).
[CrossRef]

S. Kurtz, D. Myers, W. E. McMahon, J. Geisz, and M. Steiner, “A comparison of theoretical efficiencies of multi-junction concentrator solar cells,” Prog. Photovolt. Res. Appl.16(6), 537–546 (2008).
[CrossRef]

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl.17(1), 75–83 (2009).
[CrossRef]

M. A. Green and A. Ho-Baillie, “Forty three percent composite split-spectrum concentrator solar cell efficiency,” Prog. Photovolt. Res. Appl.18(1), 42–47 (2010).
[CrossRef]

A. S. Brown and M. A. Green, “Limiting efficiency for current-constrained two-terminal tandem cell stacks,” Prog. Photovolt. Res. Appl.10(5), 299–307 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

G. L. Araújo and A. Marti, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells33(2), 213–240 (1994).
[CrossRef]

A. Martí and G. L. Araujo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells43(2), 203–222 (1996).
[CrossRef]

Thin Solid Films (1)

R. R. Willey, “Achieving narrow bandpass filters which meet the requirements for DWDM,” Thin Solid Films398–399, 1–9 (2001).
[CrossRef]

Other (3)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1999).

E. D. Jackson, “Areas for improvement of the semiconductor solar energy converter,” in Transactions of the Conference on the Use of Solar Energy (University of Arizona Press, 1955), p. 122.

R. L. Moon, L. W. James, H. A. Vander Plas, T. O. Yep, G. A. Antypas, and Y. Chai, “Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight,” in 13th Photovoltaic Specialists Conference (IEEE, 1978), pp. 859–867.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Equivalent circuit diagram of an ideal single-junction solar cell.

Fig. 2
Fig. 2

Schematic diagram of the optical path with five photocells and four filters used in the spectrum-splitting solar photovoltaic conversion system.

Fig. 3
Fig. 3

To match the spectral response of each photocell, four optical film filters have spectral transmission windows of 300-480nm, 400-630 nm, 600-730 nm and 700-870 nm, respectively, as measured by spectroscopic ellipsometry, and are used to divide the solar spectrum into five sub-spectral regions of (I) 300-480 nm, (II) 480-630 nm, (III) 630-730 nm, (IV) 730-870 nm, and (V) 870-1800 nm, respectively.

Fig. 4
Fig. 4

The I-V curves of five single-junction photocells are measured under the 2.8SUN solar irradiation intensity condition.

Fig. 5
Fig. 5

The measured photovoltaic conversion efficiency changes with the solar irradiation intensity.

Fig. 6
Fig. 6

Schematic diagram to show that the output power will be reduced by the internal shunt and series resistances as the powers Psh and Ps, respectively in the practical application of a solar cell.

Fig. 7
Fig. 7

Photovoltaic conversion efficiency of the spectrally divided system designed in this work to have an optimal efficiency of 42.7% obtained under ideal condition in which Ris = 0 and Rish = ∞.

Tables (2)

Tables Icon

Table 1 Parameters extracted from the I-V curves of 5 five single-junction photocells measured under the 2.8SUN solar irradiation intensity condition

Tables Icon

Table 2 Measured photovoltaic conversion efficiencies of five photocells in the sub-spectral regions with comparisons to the ideal efficiency under the perfect photo diode structure condition and the efficiency limit calculated by the detailed balance model

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

I i ( V i )= I ph i I 0 i [exp( q V i k T C )1],
I ph i =q( F ph F 0 ), I 0 i =q F 0 ,
F ph =A λ n λ n+1 N ph i (λ)dλ, F 0 =2A E g /h N 0 i (ν)dν ,
N ph i (λ)= C e Eλ hc , N 0 i (ν, T C )= 2π c 2 ν 2 exp(hν/k T C )1 ,
I i ( V i )=qA λ n λ n+1 C e Eλ hc dλ 4πqA c 2 exp( q V i k T C ) E g /h ν 2 exp( hν / k T C )1 dν .
P i = I i V i .
P i V i =0.
[1+ q V m i k T C ]exp( q V m i k T C )= h 2 c 4π k 3 T C 3 λ n λ n+1 C e Eλ dλ m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=m E g /k T C
P m i =qA V m i λ n λ n+1 C e Eλ hc dλ 4πqA c 2 k 3 T C 3 h 3 V m i exp( q V m i k T C ) m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=m E g /k T C .
η model = i=1 N P m i P in ×100%,
P in =A 0 C e Edλ
η exp = i=1 5 I m i V m i P in ×100%,
P out i = P in i ( P dio i + P s i + P sh i ).
P ideal i = P out i + P s i + P sh i ,
P out i = I i V i , P s i = ( I i ) 2 R s i , P sh i = ( V i + I i R s i ) 2 / R sh i .
{ 1 R sh = 1 R sh0 I 0 V T exp( I sc R s V T ) R s = R s0 V T I 0 exp( V oc V T ) I 0 = I sc exp( V oc V T )exp( I sc R s V T ) ,
η ideal = i=1 5 P ideal i P in ×100%,
I i ( V i )=qA λ n λ n+1 C e Eλ hc dλ 4πqA c 2 exp( q V i k T C ) E g /h ν 2 exp( hν k T C )1 dν .
a x 2 e x 1 dx= m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=ma ,
I i ( V i )=qA λ n λ n+1 C e Eλ hc dλ 4πq c 2 k 3 T C 3 h 3 Aexp( q V i k T C ) m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=m E g /k T C .
P i =q V i A λ n λ n+1 C e Eλ hc dλ 4πq c 2 k 3 T C 3 h 3 V i Aexp( q V i k T C ) m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=m E g /k T C .
P i V i =Aq λ n λ n+1 C e Eλ hc dλ 4πq c 2 k 3 T C 3 h 3 A[ 1+ q V i k T C ]exp( q V i k T C ) m=1 1 m 3 [y e 2 y +2y e y +2 e y ] y=m E g /k T C =0
I= I ph I 0 [exp( V+I R s V T )1] V+I R s R sh .
I sc = I ph I 0 [exp( I sc R s V T )1] I sc R s R sh .
0= I ph I 0 [exp( V oc V T )1] V oc R sh .
I 0 [exp( V oc V T )exp( I sc R s V T )]+ V oc R sh I sc (1+ R s R sh )=0.
I 0 = I sc exp( V oc V T )exp( I sc R s V T ) ,
I= I 0 exp( V oc V T ) I 0 exp( V+I R s V T )+ V oc VI R s R sh .
( R s dV dI )[ I 0 V T exp( V+I R s V T )+ 1 R sh ]=1.
1 R sh = 1 R sh0 I 0 V T exp( I sc R s V T ).
R s = R s0 V T I 0 exp( V oc V T ).

Metrics