Abstract

The effect of air-gap/GaN DBR structure, fabricated by selective lateral wet-etching, on InGaN light-emitting diodes (LEDs) is investigated. The air-gap/GaN DBR structures in LED acts as a light reflector, and thereby improve the light output power due to the redirection of light into escape cones on both front and back sides of the LED. At an injection current of 20 mA, the enhancement in the radiometric power as high as 1.91 times as compared to a conventional LED having no DBR structure and a far-field angle as low as 128.2° are realized with air-gap/GaN DBR structures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).
  2. M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
    [CrossRef]
  3. D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
    [CrossRef]
  4. S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
    [CrossRef]
  5. A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
    [CrossRef]
  6. R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
    [CrossRef]
  7. B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
    [CrossRef]
  8. R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
    [CrossRef]
  9. M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
    [CrossRef]
  10. H. A. McLeod, Thin-Film Optical Filters (McGraw-Hill, 1989).
  11. H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
    [CrossRef]

2009

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

2008

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

2007

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

2006

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

2005

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

2003

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

2002

M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
[CrossRef]

Altoukhov, A.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Arakawa, Y.

M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
[CrossRef]

Arita, M.

M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
[CrossRef]

Butté, R.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Byrne, D.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

Caldwell, J. D.

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Carlin, J.-F.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Castiglia, A.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Cha, O. H.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Chen, W. H.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Cho, H. K.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Choi, Y.-S.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

Cuong, T. V.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Damilano, B.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

David, A.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

Dussaigne, A.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

Eddy, C. R.

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Feltin, E.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Grandjean, N.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

Haberer, E. D.

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

Henry, R. L.

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Holm, R. T.

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Hong, C.-H.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Horng, R.-H.

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

Hu, E. L.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

Hu, X. D.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Huang, S.-Y.

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

Jeong, H.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Jeong, M. S.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Jin, C. L.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Kim, H. G.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Kong, B. H.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Levrat, J.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

Massies, J.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

Mastro, M. A.

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Meier, C.

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

Nakamura, S.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

Natali, F.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

Nishioka, M.

M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
[CrossRef]

Qin, Z. X.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Ren, Q.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Sharma, R.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

Suh, E.-K.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Wang, C.-F.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

Wang, Q.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Wang, W.-K.

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

Weisbuch, C.

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

Woo, S. H.

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Wuu, D.-S.

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

Xu, J.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Yang, Z. J.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Yu, D. P.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Yu, T. J.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Zhang, B.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Zhang, B. P.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Zhang, G. Y.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Zhang, Z. S.

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

M. A. Mastro, J. D. Caldwell, R. T. Holm, R. L. Henry, and C. R. Eddy., “Design of gallium nitride resonant cavity light-emitting diodes on Si substrates,” Adv. Mater. (Deerfield Beach Fla.)20(1), 115–118 (2008).
[CrossRef]

Appl. Phys. Lett.

A. Altoukhov, J. Levrat, E. Feltin, J.-F. Carlin, A. Castiglia, R. Butté, and N. Grandjean, “High reflectivity air-gap distributed Bragg reflectors realized by wet etching of AlInN sacrificial layers,” Appl. Phys. Lett.95(19), 191102 (2009).
[CrossRef]

R. Sharma, Y.-S. Choi, C.-F. Wang, A. David, C. Weisbuch, S. Nakamura, and E. L. Hu, “Gallium-nitride-based microcavity light-emitting diodes with air-gap distributed Bragg reflectors,” Appl. Phys. Lett.91(21), 211108 (2007).
[CrossRef]

R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching,” Appl. Phys. Lett.87(5), 051107 (2005).
[CrossRef]

H. G. Kim, T. V. Cuong, H. Jeong, S. H. Woo, O. H. Cha, E.-K. Suh, C.-H. Hong, H. K. Cho, B. H. Kong, and M. S. Jeong, “Spatial distributed of crown shaped light emission from a periodic inverted polygonal deflector embedded in an InGaN/GaN light emitting diode,” Appl. Phys. Lett.92(6), 061118 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

D. Byrne, F. Natali, B. Damilano, A. Dussaigne, N. Grandjean, and J. Massies, “Blue resonant cavity light emitting diodes with a high-Al-content GaN/AlGaN distributed Bragg reflector,” Jpn. J. Appl. Phys.42(Part 2, No. 12B), L1509–L1511 (2003).
[CrossRef]

S.-Y. Huang, R.-H. Horng, W.-K. Wang, and D.-S. Wuu, “GaN-based green resonant cavity light-emitting diodes,” Jpn. J. Appl. Phys.45(4B), 3433–3435 (2006).
[CrossRef]

Phys. Status Solidi A

M. Arita, M. Nishioka, and Y. Arakawa, “InGaN vertical microcavity LEDs with a Si-doped AlGaN/GaN distributed Bragg reflector,” Phys. Status Solidi A194(2), 403–406 (2002).
[CrossRef]

Phys. Status Solidi C

B. Zhang, Z. S. Zhang, J. Xu, Q. Ren, C. L. Jin, Z. J. Yang, Q. Wang, W. H. Chen, X. D. Hu, T. J. Yu, Z. X. Qin, G. Y. Zhang, D. P. Yu, and B. P. Zhang, “Effects of the artificial Ga-nitride/air periodic nanostructures on current injected GaN-based light emitters,” Phys. Status Solidi C2(7), 2858–2861 (2005).
[CrossRef]

Other

H. A. McLeod, Thin-Film Optical Filters (McGraw-Hill, 1989).

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

3D schematic diagrams of the air-gap/GaN DBR GaN template showing (a) bird-eye view, and (b) side-view. Cross-sectional SEM images taken near the center and the edge are shown in (c), and (d), respectively.

Fig. 2
Fig. 2

(a) Normal-incidence reflectivity vs. wavelength spectra of air-gap/GaN DBR as a function of number of air-gap/GaN pairs. (b) The calculated reflectivity of 4 pairs air-gap/GaN DBR as a function of the angle of incidence at 460 nm.

Fig. 3
Fig. 3

(a) SEM image of the air-gap/GaN DBR LED, (b) optical micrograph, (c) CSEM image, (d) line scan data of EL by CSEM, and (e) diffuse reflectance spectra.

Fig. 4
Fig. 4

(a) L-I characteristics of air-gap/GaN DBR LED and conventional LED measured with a photo detector, (b) integral sphere. (c) The beam profiles of the two LEDs.

Metrics