Abstract

The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a ‘winner takes all’ manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).
  3. M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
    [CrossRef]
  4. P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
    [CrossRef]
  5. L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys. 75, 737–747 (1994).
    [CrossRef]
  6. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [CrossRef] [PubMed]
  7. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
    [CrossRef] [PubMed]
  8. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
    [CrossRef] [PubMed]
  9. A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
    [CrossRef] [PubMed]
  10. A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
    [CrossRef]
  11. M. R. X. Debarros and P. C. Becker, “2-color synchronously mode locked femtosecond ti-sapphire laser,” Opt. Lett. 18, 631–633 (1993).
    [CrossRef]
  12. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, “Dual wavelength self mode locked ti-sapphire laser,” Opt. Lett. 18, 1074–1076 (1993).
    [CrossRef] [PubMed]
  13. R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).
  14. L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
    [CrossRef]
  15. Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
    [CrossRef]
  16. D. R. Dykaar, S. B. Darack, and W. H. Knox, “Cross locking dynamics in a 2-color mode locked ti-sapphire laser,” Opt. Lett. 19, 1058–1060 (1994).
    [CrossRef] [PubMed]
  17. A. Leitenstorfer, C. Furst, and A. Laubereau, “Widely tunable two-color mode-locked ti sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett. 20, 916–918 (1995).
    [CrossRef] [PubMed]
  18. R. Hegenbarth, A. Steinmann, G. Toth, J. Hebling, and H. Giessen, “Two-color femtosecond optical parametric oscillator with 1.7 w output pumped by a 7.4 w yb:kgw laser,” J. Opt. Soc. Am. B 28, 1344–1352 (2011).
    [CrossRef]
  19. N. I. Michailov, “Passively mode-locked dye laser with spatial dispersion in the gain medium,” J. Opt. Soc. Am. B 9, 1369–1373 (1992).
    [CrossRef]
  20. S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
    [CrossRef]
  21. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-modelocked ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
    [CrossRef] [PubMed]
  22. A. Gordon, B. Vodonos, V. Smulakovski, and B. Fischer, “Melting and freezing of light pulses and modes in mode-locked lasers,” Opt. Express 11, 3418–3424 (2003).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

2004 (1)

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (3)

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
[CrossRef]

2001 (2)

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

2000 (1)

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

1995 (1)

1994 (2)

D. R. Dykaar, S. B. Darack, and W. H. Knox, “Cross locking dynamics in a 2-color mode locked ti-sapphire laser,” Opt. Lett. 19, 1058–1060 (1994).
[CrossRef] [PubMed]

L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys. 75, 737–747 (1994).
[CrossRef]

1993 (3)

1992 (1)

1976 (1)

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Alphonse, G. A.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
[CrossRef]

Asaki, M. T.

Becker, P. C.

Burns, D.

Casperson, L. W.

L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys. 75, 737–747 (1994).
[CrossRef]

Coleman, J. J.

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Darack, S. B.

Debarros, M. R. X.

Delfyett, P. J.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Dykaar, D. R.

Euteneuer, A.

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Evans, J. M.

Felinto, D.

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

Finger, E.

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Fischer, B.

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Furst, C.

Garvey, D.

Giessen, H.

Gordon, A.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Hebling, J.

Hegenbarth, R.

Hofmann, M.

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Holonyak, N.

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Huang, C.

Kaboyashi, Y.

Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Kapteyn, H. C.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-modelocked ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

Khoshnevissan, M.

L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys. 75, 737–747 (1994).
[CrossRef]

Knox, W. H.

Kohazi-Kis, A.

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Laubereau, A.

Lawall, J.

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

Leeb, K.

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Leitenstorfer, A.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Ludowise, M. J.

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Ma, L.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Marian, A.

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

Michailov, N. I.

Mielke, M.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Murnane, M. M.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-modelocked ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Pe’er, A.

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Shapiro, E. A.

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

Shapiro, M.

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

Shelton, R. K.

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Smulakovski, V.

Spence, D. E.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

Steinmann, A.

Stillman, G. E.

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Stowe, M. C.

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

Szipocs, R.

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Torizuka, K.

Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
[CrossRef]

Toth, G.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Vodonos, B.

Wei, Z.

Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
[CrossRef]

Wright, P. D.

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

Xua, X.

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Xua, Z.

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Yanga, S.

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).

Ye, J.

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Zhanga, X.

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Zhou, J.

Appl. Phys. B (1)

Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B 74, 171–176 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett. 29, 18–20 (1976).
[CrossRef]

Electron. Lett. (1)

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett. 38, 368–370 (2002).
[CrossRef]

J. Appl. Phys. (1)

L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys. 75, 737–747 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys. 10, 454457 (2000).

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Laser Eng. (1)

S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng. 36, 381–387 (2001).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007).
[CrossRef]

Science (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science 330, 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science 322, 1857–1860 (2008).
[CrossRef] [PubMed]

A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063–2067 (2004).
[CrossRef] [PubMed]

Other (2)

A. E. Siegman, Lasers (University Science Books, 1986).

A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).

Supplementary Material (1)

» Media 1: AVI (31897 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Block diagram illustrating the core principle of intra-cavity gain shaping.

Fig. 2
Fig. 2

(a) Schematic of the standard design of a TiS oscillator. A linear cavity composed of a TiS crystal (Ti:Al2O3) as gain medium placed between two focusing curved mirrors (M1, M2), and a prism pair (or chirped mirrors) for dispersion compensation. (b) Schematic of the intra-cavity shaped oscillator. A 2nd TiS gain medium is placed at the Fourier plane of a 1 × 1 telescope placed between the prisms (Both TiS crystals were 3 mm long, 0.25 wt% doped). The telescope is comprised of two curved mirrors (M3, M4) of equal focal length f = 100 mm. Since the spectrum is spatially dispersed in the 2nd gain medium (each frequency component traverses at a different position), mode competition is canceled resulting in the ability to tailor the gain profile inside the oscillator by controlling the spatial shape of the pump in the 2nd gain medium. The inset shows a lateral view of the two pump spots in the 2nd gain medium.

Fig. 3
Fig. 3

Spectra of CW and pulsed operation of the cavity. (a) CW spectrum demonstrating cancelation of mode competition by the coexistence of multiple CW modes (fingers) when pumping only the 2nd medium with an elliptically shaped pump spot. In this study, the prisms was made of BK7 glass with dispersive power of dθ/dλ = 0.04 rad/μm, @ λ = 0.8 μm. Given a mode diameter of 21 μm the resolution of the intra-cavity shaper is 9.3 nm (the bandwidth occupied by a single mode on the surface of the 2nd gain medium). We used cylindrical optics to obtain an elliptically shaped pump beam of 21 μm × 85 μm at the 2nd medium and we observed 4 CW fingers that span a bandwidth of ≈ 35 nm, in good agreement with the expected 37 nm based on the above resolution. (b) Pulsed spectra observed in the cavity at different stages of pump transfer from the 1st medium (homogeneous gain) to the 2nd medium (spectrally selective gain). The 2nd medium is pumped at two selected frequencies with a tightly focused pump, resulting in a spectrum with two sharp lobes (red - initial, blue - intermediate, green - final spectrum).

Fig. 4
Fig. 4

Control of spectral power, width and center position of spectral lobes. Taking a two lobed spectrum as a reference (green curve): control is demonstrated over the width of each lobe by changing the spatial width of the pump (blue curve) and the spectral power of each lobe by changing the power splitting ratio between lobes (red curve). The center of each lobe is also controlled by sweeping the pump spot position (left lobe shifted by 20 nm for both curves to 745 nm).

Metrics