Abstract

Simultaneous all-optical RZ-OOK to NRZ-OOK format conversion for two tributaries in PDM signal is demonstrated utilizing a single section of highly nonlinear fiber through polarization nonlinear loop mirror configuration. Less than 1-dB power penalty is achieved in a 2 × 12.5-Gb/s PDM system, and only 1.4-dB SNR penalty is obtained in a 2 × 40-Gb/s PDM system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Kwok and C. L. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
    [CrossRef]
  2. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
    [CrossRef]
  3. L. Banchi, M. Presi, A. D’Errico, G. Contestabile, and E. Ciaramella, “Effective all-optical RZ-to-NRZ conversion for transparent network gateways,” in Proc. OFC’2009,OThM1 (2009).
  4. S. H. Lee, K. K. Chow, and C. Shu, “Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion,” Opt. Express 13(5), 1710–1715 (2005).
    [CrossRef] [PubMed]
  5. S. H. Lee, K. K. Chow, and C. Shu, “All optical RZ to NRZ format conversion using phase modulation in a dispersion-shifted fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), JThE75 (2005).
  6. G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express 17(16), 13346–13353 (2009).
    [CrossRef] [PubMed]
  7. Z. Yu, X. Enming, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
    [CrossRef]
  8. B. P. P. Kuo, P. C. Chui, and K. K. Y. Wong, “All-optical tunable delay with NRZ-to-RZ format conversion capability based on optical kerr switch and pulse pre-chirping,” J. Lightwave Technol. 26(23), 3770–3775 (2008).
    [CrossRef]
  9. C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
    [CrossRef]
  10. L. Banchi, M. Presi, A. D. Errico, G. Contestabile, and E. Ciaramella, “All-optical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol. 28(1), 32–38 (2010).
    [CrossRef]
  11. W. Astar, C. C. Wei, Y. J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express 16(16), 12039–12049 (2008).
    [CrossRef] [PubMed]
  12. Y. Ding, C. Peucheret, M. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Ou, X. Zhang, and D. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express 18(20), 21121–21130 (2010).
    [CrossRef] [PubMed]
  13. S. Liu, K. J. Lee, F. Parmigiani, M. Ibsen, P. Petropoulos, D. Richardson, and K. Gallo, “OTDM to WDM format conversion based on cascaded SHG/DFG in a single PPLN waveguide,” in Proc.OFC’2010, OWF4 (2010).
  14. S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
    [CrossRef]
  15. Y. Yu, X. Zhang, and D. Huang, “All-optical format conversion from CS-RZ to NRZ at 40Gbit/s,” Opt. Express 15(9), 5693–5698 (2007).
    [CrossRef] [PubMed]
  16. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 × 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1, 200 km of fiber,” in Proc.OFC’2010, PDPB8 (2010).
  17. X. Zhuo, J. J. Yu, M. F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Brik, P. I. Borel, D. W. Peckham, J. R. Lingle, and B. Y. Zhu, “46-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [CrossRef]
  18. A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
    [CrossRef]
  19. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
    [CrossRef]

2011

2010

2009

Z. Yu, X. Enming, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express 17(16), 13346–13353 (2009).
[CrossRef] [PubMed]

2008

2007

2006

C. H. Kwok and C. L. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

2005

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

S. H. Lee, K. K. Chow, and C. Shu, “Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion,” Opt. Express 13(5), 1710–1715 (2005).
[CrossRef] [PubMed]

2000

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

Astar, W.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

W. Astar, C. C. Wei, Y. J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express 16(16), 12039–12049 (2008).
[CrossRef] [PubMed]

Banchi, L.

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Borel, P. I.

Brik, M.

Carter, G. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

W. Astar, C. C. Wei, Y. J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express 16(16), 12039–12049 (2008).
[CrossRef] [PubMed]

Chen, J.

Chen, Y. J.

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

S. H. Lee, K. K. Chow, and C. Shu, “Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion,” Opt. Express 13(5), 1710–1715 (2005).
[CrossRef] [PubMed]

Chui, P. C.

Ciaramella, E.

Contestabile, G.

Dadap, J. I.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Ding, Y.

Driscoll, J. B.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Eiselt, M.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

Enming, X.

Z. Yu, X. Enming, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

Errico, A. D.

Green, W. M. J.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Huang, D.

Huang, M. F.

Kuo, B. P. P.

Kwok, C. H.

C. H. Kwok and C. L. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Lee, S. H.

Leng, L.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Lin, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Lin, C. L.

C. H. Kwok and C. L. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Lingle, J. R.

Liu, L.

Liu, X.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Lu, G. W.

Luo, B.

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

Magill, P.

Miyazaki, T.

Nelson, L.

Osgood, J. R. M.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Ou, H.

Pan, W.

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

Park, S. G.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

Peckham, D. W.

Peucheret, C.

Presi, M.

Pu, M.

Seoane, J.

Shao, Y.

Shu, C.

S. H. Lee, K. K. Chow, and C. Shu, “Spectral filtering from a cross-phase modulated signal for RZ to NRZ format and wavelength conversion,” Opt. Express 13(5), 1710–1715 (2005).
[CrossRef] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

Spiekman, L. H.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

Su, Y.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Tian, X.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Tian, Y.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Vlasov, Y. A.

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

Wang, T.

Wei, C. C.

Weisenfeld, J. M.

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

Wong, K. K. Y.

Xu, J.

Xu, X.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Yan, C.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Yan, L. S.

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

Ye, J.

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

Yi, A. L.

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

Yi, L.

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

Yu, J. J.

Yu, Y.

Yu, Z.

Z. Yu, X. Enming, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

Zhang, X.

Zhu, B. Y.

Zhuo, X.

Zsigri, B.

IEEE J. Sel. Top. Quantum Electron.

C. H. Kwok and C. L. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~ 2.5 dB,” IEEE J. Sel. Top. Quantum Electron. 16(1), 234–249 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Yu, X. Enming, D. Huang, and X. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009).
[CrossRef]

C. Yan, Y. Su, L. Yi, L. Leng, X. Tian, X. Xu, and Y. Tian, “All-optical format conversion from NRZ to BPSK using a single saturated SOA,” IEEE Photon. Technol. Lett. 18(22), 2368–2370 (2006).
[CrossRef]

S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Weisenfeld, “Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit,” IEEE Photon. Technol. Lett. 12(3), 233–235 (2000).
[CrossRef]

A. L. Yi, L. S. Yan, B. Luo, W. Pan, and J. Ye, “Wavelength conversion of RZ-OOK PDM signals based on XPM in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 23(6), 341–343 (2011).
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(3), 624–626 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 × 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1, 200 km of fiber,” in Proc.OFC’2010, PDPB8 (2010).

S. Liu, K. J. Lee, F. Parmigiani, M. Ibsen, P. Petropoulos, D. Richardson, and K. Gallo, “OTDM to WDM format conversion based on cascaded SHG/DFG in a single PPLN waveguide,” in Proc.OFC’2010, OWF4 (2010).

L. Banchi, M. Presi, A. D’Errico, G. Contestabile, and E. Ciaramella, “Effective all-optical RZ-to-NRZ conversion for transparent network gateways,” in Proc. OFC’2009,OThM1 (2009).

S. H. Lee, K. K. Chow, and C. Shu, “All optical RZ to NRZ format conversion using phase modulation in a dispersion-shifted fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), JThE75 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of XPM-based format conversion

Fig. 2
Fig. 2

Conceptual diagram of all-optical PDM format convertor. PC: polarization controller, PBS: polarization beam splitter, HNLF: highly nonlinear fiber, OBPF: optical band-pass filter.

Fig. 3
Fig. 3

Experimental setup: (a) PDM transmitter, (b) PDM format conversion; MZM: Mach-Zehnder modulator, VOA: variable optical attenuator, PBC: polarization beam combiner, ECL: external cavity laser, BERT: BER tester.

Fig. 4
Fig. 4

Spectra of the CW probe light, the RZ signal before and after the HNLF, and converted NRZ signal in the 2 × 12.5-Gb/s PDM system (one polarization tributary). The wavelengths of the CW light and the original RZ-PDM signal are 1559 nm and 1556 nm, respectively.

Fig. 5
Fig. 5

BER curves of the 2 × 12.5-Gb/s PDM system with typical eye diagrams and pulse pattern inserted. The channel with 1-km decorrelating SMF is referred as CH1 and the other channel referred as CH2.

Fig. 6
Fig. 6

Power penalties for the converted NRZ signals vs. wavelength of the CW probe light in the 2 × 12.5-Gb/s PDM system. The wavelength of the input RZ-PDM signal is fixed at 1556 nm.

Fig. 7
Fig. 7

SNR and corresponding eye diagrams of the 2 × 40-Gb/s PDM system measured by 86100C high speed oscilloscope (optical bandwidth up to 65 GHz). (a) Input RZ signal and converted NRZ signal for (b) CH1 and (c) CH2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR(dB)=10 log 10 ( I 1 I 0 σ 1 + σ 0 )

Metrics