Abstract

The thermal lens induced in an a-cut BaWO4 crystal by stimulated Raman scattering is measured using lateral shearing interferometry. The strength of the lens is proportional to the Stokes output power. For light polarized parallel to the a-axis, and a Stokes mode radius of 120 μm, the lens is negative and highly astigmatic: −0.8 D W−1 in the plane parallel to the a-axis and −7.7 D W−1 in the plane parallel to the c-axis. The implications of this thermal lens for Raman laser design are discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [CrossRef]
  2. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
    [CrossRef]
  3. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
    [CrossRef] [PubMed]
  4. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  5. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
    [CrossRef] [PubMed]
  6. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
    [CrossRef]
  7. L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
    [CrossRef]
  8. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
    [CrossRef]
  9. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [CrossRef]
  10. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
    [CrossRef]
  11. P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
    [CrossRef] [PubMed]
  12. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).
  13. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
    [CrossRef]
  14. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett. 35(17), 2994–2996 (2010).
    [CrossRef] [PubMed]
  15. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
    [CrossRef] [PubMed]
  16. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express 16(23), 18950–18955 (2008).
    [CrossRef] [PubMed]
  17. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett. 34(18), 2811–2813 (2009).
    [CrossRef] [PubMed]
  18. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett. 35(23), 3874–3876 (2010).
    [CrossRef] [PubMed]
  19. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
    [CrossRef] [PubMed]
  20. A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
    [CrossRef]
  21. W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
    [CrossRef]
  22. Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
    [CrossRef]
  23. T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
    [CrossRef]
  24. W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
    [CrossRef]
  25. D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
    [CrossRef]
  26. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  27. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
    [CrossRef]
  28. M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
    [CrossRef] [PubMed]
  29. M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
    [CrossRef]
  30. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [CrossRef]
  31. W. Koechner, Solid-State Laser Engineering (Springer Verlag, 2006).
  32. Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
    [CrossRef]
  33. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  34. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16(12), 8995–9010 (2008).
    [CrossRef] [PubMed]
  35. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
    [CrossRef]
  36. X. Peng, A. Asundi, Y. Chen, and Z. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40(9), 1396–1403 (2001).
    [CrossRef] [PubMed]

2012 (2)

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

2011 (4)

J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express 19(2), 913–922 (2011).
[CrossRef] [PubMed]

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[CrossRef] [PubMed]

2010 (7)

2009 (4)

2008 (3)

2007 (3)

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2005 (2)

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

2003 (1)

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

2001 (1)

1998 (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

1994 (1)

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

1982 (1)

1973 (1)

Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
[CrossRef]

Asundi, A.

Bai, F.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Balembois, F.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16(12), 8995–9010 (2008).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Bendow, B.

Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
[CrossRef]

Birch, R. B.

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

Blows, J. L.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Bohn, M. J.

Bonner, G. M.

Brasseur, J. K.

Brauch, U.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Burns, D.

Butler, J. E.

Chen, W.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Chen, Y.

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Cheng, X. F.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Danailov, M.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

Dawes, J.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Dawson, M. D.

Dekker, P.

Demidovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

Didierjean, J.

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Du, C.

Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
[CrossRef]

Duan, Y.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Duan, Y. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Fan, L.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

Fan, Y. X.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Feve, J.-P. M.

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Friel, I.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[CrossRef] [PubMed]

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[CrossRef]

Ge, W.

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Ge, W. W.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Geoghegan, S. L.

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[CrossRef] [PubMed]

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[CrossRef]

Georges, P.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16(12), 8995–9010 (2008).
[CrossRef] [PubMed]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Giesen, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Grabtchikov, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

Hastie, J. E.

Herault, E.

Hu, X. B.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Huang, C.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Huang, L.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Huang, Y.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Hugel, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Ina, H.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Itoh, M.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

Jia, G. H.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Jiang, M. H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Kananovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

Kemp, A. J.

Kobayashi, S.

Lan, W. X.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Lee, A.

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

Lee, A. J.

Li, H. X.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Li, Y. Q.

Ling, Z.

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Liu, J. H.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Liu, Z. J.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Lubeigt, W.

Mildren, R. P.

Millar, P.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[CrossRef] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

Mitra, S. S.

Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
[CrossRef]

Ogilvy, H.

Okida, M.

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

Omatsu, T.

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Opower, H.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Orlovich, V.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

Pask, H.

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Pask, H. M.

Peng, X.

Piper, J.

Piper, J. A.

Rabeau, J. R.

Ran, D.

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Ruan, S.

Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
[CrossRef]

Sabella, A.

Savitski, V. G.

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express 19(7), 6938–6944 (2011).
[CrossRef] [PubMed]

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[CrossRef]

Shortoff, K. E.

Spence, D. J.

Sun, S.

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Sun, W. J.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Takeda, M.

Tateda, M.

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

Tonouchi, A.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

Tsay, Y.-F.

Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
[CrossRef]

Tu, C. Y.

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Twitchen, D. J.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[CrossRef]

Voss, A.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Wan, X. B.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Wang, G. T.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Wang, H. T.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Wang, J.

Wang, J. Y.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Wang, Q.

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

Wang, Q. P.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Wang, Z.

Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
[CrossRef]

Wei, Y.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Wittig, K.

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

Xia, H.

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Xiong, Z.

Xu, H. Y.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Xu, X. G.

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Yatagai, T.

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express 13(13), 4909–4915 (2005).
[CrossRef] [PubMed]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

Zhang, G.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Zhang, H.

Zhang, H. J.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
[CrossRef] [PubMed]

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Zhang, L.

Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
[CrossRef]

Zhang, X. Y.

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Zhu, H.

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B 103(3), 559–562 (2011).
[CrossRef]

L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 94(4), 553–557 (2009).
[CrossRef]

A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58(5), 365–372 (1994).
[CrossRef]

T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:.
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron. 48(3), 328–337 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett. 10(12), 1727–1729 (1998).
[CrossRef]

J. Cryst. Growth (1)

W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Laser Phys. Lett. (2)

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[CrossRef]

W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett. 8(7), 512–515 (2011).
[CrossRef]

Mater. Sci. Eng. B (1)

D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B 130(1-3), 206–209 (2006).
[CrossRef]

Opt. Commun. (1)

M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun. 277(1), 125–129 (2007).
[CrossRef]

Opt. Express (7)

Opt. Laser Technol. (1)

Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol. 42(6), 873–877 (2010).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. B (1)

Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8(6), 2688–2696 (1973).
[CrossRef]

Proc. SPIE (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[CrossRef]

Prog. Quantum Electron. (2)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron. 27(1), 3–56 (2003).
[CrossRef]

Other (2)

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).

W. Koechner, Solid-State Laser Engineering (Springer Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the measurement of the thermal lens in the BaWO4 crystal. Cavity optic separations are shown in mm.

Fig. 2
Fig. 2

Raman laser power transfer with probe mirror (PM) in cavity.

Fig. 3
Fig. 3

Lateral shearing interferograms for (a) horizontal plane, maximum power (11.45 W absorbed pump power, 0.67 W Stokes output power); (b) horizontal plane, references fringes (pump off); (c) vertical plane, maximum power (11.45 W absorbed pump power, 0.56 W Stokes output power – lower than for the horizontal case due to drift in laser performance between experiments); (d) vertical plane, reference fringes (pump off).

Fig. 4
Fig. 4

Strength of thermal lens in BaWO4 in the horizontal and vertical planes (containing the c- and a-axes respectively), plotted as functions of Stokes output power.

Tables (2)

Tables Icon

Table 1 Details of Coatings on Cavity Optics

Tables Icon

Table 2 Thermal Properties of BaWO4 [25]

Metrics