Abstract

We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
    [CrossRef] [PubMed]
  2. J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
    [CrossRef]
  3. I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
    [CrossRef]
  4. J. Glückstad and D. Palima, “Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach,” J. Phys.: Conf. Ser. 206, 012006 (2010).
    [CrossRef]
  5. J. Glückstad and D. Palima, “Generalized Phase Contrast: Applications in Optics and Photonics”, Springer Series in Optical Sciences, Vol. 146, 310 pp (2009).
  6. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [CrossRef]
  7. R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
    [CrossRef]
  8. J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48(5), 911–918 (2009).
    [CrossRef] [PubMed]
  9. S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
    [CrossRef]
  10. A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
    [CrossRef]
  11. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  12. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21(1), 53–58 (2004).
    [CrossRef] [PubMed]
  13. J. Yamamoto and T. Iwai, “Spatial Stability of Particles Trapped by Time-Division Optical Tweezers,” Int. J. Optomechatronics 3(4), 253–263 (2009).
    [CrossRef]
  14. H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).
  15. A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

2012

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

2011

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

2010

J. Glückstad and D. Palima, “Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach,” J. Phys.: Conf. Ser. 206, 012006 (2010).
[CrossRef]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

2009

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48(5), 911–918 (2009).
[CrossRef] [PubMed]

J. Yamamoto and T. Iwai, “Spatial Stability of Particles Trapped by Time-Division Optical Tweezers,” Int. J. Optomechatronics 3(4), 253–263 (2009).
[CrossRef]

2008

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

2006

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

2005

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

2004

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Bañas, A.

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

Bañas, A. R.

Beaudoin, N.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

Bowman, R.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Cižmár, T.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Collings, N.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

Crossland, W. A.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

D’Ambrosio, V.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Dam, J. S.

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Glückstad, J.

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

J. Glückstad and D. Palima, “Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach,” J. Phys.: Conf. Ser. 206, 012006 (2010).
[CrossRef]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Guizar-Sicairos, M.

Gutiérrez-Vega, J. C.

Iwai, T.

J. Yamamoto and T. Iwai, “Spatial Stability of Particles Trapped by Time-Division Optical Tweezers,” Int. J. Optomechatronics 3(4), 253–263 (2009).
[CrossRef]

Jedrkiewicz, O.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Keiding, S.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Kelemen, L.

Manolis, I. G.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

Martínez, A.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

Martínez, J. L.

Martínez-García, A.

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Mias, S.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

Moreno, I.

J. L. Martínez, A. Martínez-García, and I. Moreno, “Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel,” Appl. Opt. 48(5), 911–918 (2009).
[CrossRef] [PubMed]

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

Ormos, P.

Padgett, M. J.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Palima, D.

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[CrossRef] [PubMed]

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

J. Glückstad and D. Palima, “Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach,” J. Phys.: Conf. Ser. 206, 012006 (2010).
[CrossRef]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

Palima, D. Z.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Pedersen, F.

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

Perch-Nielsen, I.

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

Perch-Nielsen, I. R.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Rubino, E.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Sánchez-López, M. D. M.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Stapelfeldt, H.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Thogersen, J.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Trapani, P.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Ulriksen, H.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

Velásquez, P.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

Vizsnyiczai, G.

Wilkinson, T. D.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

Yamamoto, J.

J. Yamamoto and T. Iwai, “Spatial Stability of Particles Trapped by Time-Division Optical Tweezers,” Int. J. Optomechatronics 3(4), 253–263 (2009).
[CrossRef]

Appl. Opt.

Eur. Phys. J. Spec. Top.

R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Trapani, and M. J. Padgett, “Optimisation of a low cost SLM for diffraction efficiency and ghost order suppression,” Eur. Phys. J. Spec. Top. 199(1), 149–158 (2011).
[CrossRef]

Int. J. Optomechatronics

J. Yamamoto and T. Iwai, “Spatial Stability of Particles Trapped by Time-Division Optical Tweezers,” Int. J. Optomechatronics 3(4), 253–263 (2009).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

H. Ulriksen, J. Thogersen, S. Keiding, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Stapelfeldt, and J. Glückstad, “Independent trapping, manipulation and characterization by an all-optical biophotonics workstation,” J. Eur. Opt. Soc. Rapid Publ. 3, 08034 (2008).

J. Opt. A, Pure Appl. Opt.

A. Martínez, N. Beaudoin, I. Moreno, M. D. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A, Pure Appl. Opt. 8(11), 1013–1018 (2006).
[CrossRef]

J. Glückstad, D. Palima, J. S. Dam, and I. Perch-Nielsen, “Dynamically reconfigurable multiple beam illumination based on optical correlation,” J. Opt. A, Pure Appl. Opt. 11(3), 034012 (2009).
[CrossRef]

I. Perch-Nielsen, D. Palima, J. S. Dam, and J. Glückstad, “Parallel particle identification and separation for active optical sorting,” J. Opt. A, Pure Appl. Opt. 11(3), 034013 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys.: Conf. Ser.

J. Glückstad and D. Palima, “Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach,” J. Phys.: Conf. Ser. 206, 012006 (2010).
[CrossRef]

Nat. Photonics

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[CrossRef]

Opt. Eng.

S. Mias, I. G. Manolis, N. Collings, T. D. Wilkinson, and W. A. Crossland, “Phase-modulating bistable optically addressed spatial light modulators using wide-switching-angle ferroelectric liquid crystal layer,” Opt. Eng. 44(1), 014003 (2005).
[CrossRef]

Opt. Express

Optik (Stuttg.)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Proc. SPIE

A. Bañas, D. Palima, F. Pedersen, and J. Glückstad, “Development of a compact Bio-Optofluidic Cell Sorter,” Proc. SPIE 8274, 1–6 (2012).

Other

J. Glückstad and D. Palima, “Generalized Phase Contrast: Applications in Optics and Photonics”, Springer Series in Optical Sciences, Vol. 146, 310 pp (2009).

Supplementary Material (1)

» Media 1: MOV (961 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The matched-filtering Generalized Phase Contrast (mGPC) setup. High intensity spots corresponding to desired correlation target patterns are generated at the output despite mild phase distortions at the input phase.

Fig. 2
Fig. 2

The setup used for analyzing amplitude and phase modulation modes of the applied LCoS device. The analyzer, P, is used to visualize amplitude modulation while the mirror, M1, is used to visualize phase modulation.

Fig. 3
Fig. 3

Vertical stripes displayed via normal LCoS-projector operation showing amplitude modulation (a). Corresponding fringes in phase modulation mode obtained using a mirror for the reference wave (b). Line scans taken from the green highlights in (b) show the phase difference between stripes encoded with black and white (c).

Fig. 4
Fig. 4

A lens system acting as an mGPC optical setup. A lenslet array takes the role of the correlation target patterns and a lens that flattens the phase takes the role of the matched filter.

Fig. 5
Fig. 5

Gerchberg-Saxton optimized cTP with a 53 pixel (0.5mm) diameter (a) and corresponding 600 × 600 pixel2 (5.7 × 5.7mm2) Fourier filter (b). Amplitude constraints were based on tophats with a 26 and 300 pixel radius at the input and Fourier plane, respectively.

Fig. 6
Fig. 6

The mGPC setup utilizing two pico-projector LCoS-devices for creating the desired dynamic correlation target patterns and matched binary Fourier phase filters required for beam-forming.

Fig. 7
Fig. 7

Example mGPC input phase patterns consisting of 53 pixel diameter disks and the resulting output without Fourier filtering (a-b). Output with applied matched Fourier phase filtering (c-d). Output using a GS-optimized cTP with the same input diameter pattern (e-f). Line scans comparing the generated spot profiles (g). Insets in (c) and (e) show the binary-phase matched filters used.

Fig. 8
Fig. 8

Media 1. Experimental snapshots from a movie sequence showing the potential for real time optical manipulation. 10 mGPC spots move along the perimeter of a star figure.

Fig. 9
Fig. 9

Correlation target patterns optimized via the Gerchberg-Saxton algorithm wherein some of the patterns have 50% gray levels encoded (a). The resulting optical output with intensity variations corresponding to the gray-levels encoded (b and c).

Metrics