Abstract

We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett.29(16), 1921–1923 (2004).
    [CrossRef] [PubMed]
  2. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 μJ, sub-picosecond fiber laser system,” Opt. Express14(25), 12546–12551 (2006).
    [CrossRef]
  3. P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007).
    [CrossRef] [PubMed]
  4. D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
    [CrossRef]
  5. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000).
    [CrossRef] [PubMed]
  6. C. R. Saraceno, O. H. Heckl, C. R. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser,” Appl Phys B published online (2012) DOI 10.1007/s00340-012-4900-5
    [CrossRef]
  7. C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
    [CrossRef] [PubMed]
  8. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36(24), 4746–4748 (2011).
    [CrossRef] [PubMed]
  9. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006).
    [CrossRef] [PubMed]
  10. C. Y. Teisset, H. Fattahi, A. Sugita, L. Turi, X. Gu, O. Pronin, V. Pervak, F. Kraus, and A. Apolonski, “700 nJ broad-band MHz optical parametric amplifier,” in Ultra Fast Optics (UFO VII) and High Field Short Wavelength (HFSW XIII) Conference Program, Arcachon, (2009), Conf. Proc., pp. 1–3.
  11. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett.28(5), 367–369 (2003).
    [CrossRef] [PubMed]
  12. S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express16(9), 6397–6407 (2008).
    [CrossRef] [PubMed]
  13. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 microJ by use of an active multipass geometry,” Opt. Lett.33(7), 726–728 (2008).
    [CrossRef] [PubMed]
  14. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express16(25), 20530–20539 (2008).
    [CrossRef] [PubMed]
  15. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
    [CrossRef] [PubMed]
  16. J. Neuhaus, D. Bauer, J. Kleinbauer, A. Killi, D. H. Sutter, and T. Dekorsy, “Numerical analysis of a sub-picosecond thin-disk laser oscillator with active multipass geometry showing a variation of pulse duration within one round trip,” J. Opt. Soc. Am. B27(1), 65–71 (2010).
    [CrossRef]

2012

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

2011

2010

2008

2007

P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007).
[CrossRef] [PubMed]

2006

2004

2003

2000

1995

Amann, M.-C.

Apolonski, A.

Arisholm, G.

Aschwanden, A.

Aus der Au, J.

Baer, C. R.

Barty, C. P. J.

Bauer, D.

Baum, P.

P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007).
[CrossRef] [PubMed]

Boehm, G.

Brons, J.

Brunner, F.

Budnicki, A.

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Dawson, J. W.

Dekorsy, T.

Engqvist, A. G.

Erhard, S.

Fermann, M. E.

Gebs, R.

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Giesen, A.

Golling, M.

Grange, R.

Grasse, C.

Guina, M.

Häring, R.

Hashimoto, S.

Heckl, O. H.

Hönninger, C.

Hövel, R.

Huber, G.

Innerhofer, E.

Ito, H.

Kalashnikov, V. L.

Karszewski, M.

Kärtner, F. X.

Keller, U.

C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express16(9), 6397–6407 (2008).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett.29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett.28(5), 367–369 (2003).
[CrossRef] [PubMed]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000).
[CrossRef] [PubMed]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
[CrossRef] [PubMed]

Killi, A.

Kitamura, K.

Kleinbauer, J.

Kränkel, C.

Krausz, F.

Kumkar, M.

Kurimura, S.

Maas, D. J.

Marchese, S. V.

Moser, M.

Neuhaus, J.

Paschotta, R.

Pervak, V.

Petermann, K.

Peters, R.

Pronin, O.

Saraceno, C. J.

Shah, L.

Spühler, G. J.

Südmeyer, T.

C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express16(9), 6397–6407 (2008).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett.29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett.28(5), 367–369 (2003).
[CrossRef] [PubMed]

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000).
[CrossRef] [PubMed]

Sutter, D.

Sutter, D. H.

Tan, C.

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Usami, T.

Wagenblast, P.

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Weiler, S.

Wolf, M.

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Zewail, A. H.

P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000).
[CrossRef] [PubMed]

C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010).
[CrossRef] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36(24), 4746–4748 (2011).
[CrossRef] [PubMed]

S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006).
[CrossRef] [PubMed]

J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 microJ by use of an active multipass geometry,” Opt. Lett.33(7), 726–728 (2008).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett.29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett.28(5), 367–369 (2003).
[CrossRef] [PubMed]

F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007).
[CrossRef] [PubMed]

Proc. SPIE

D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012).
[CrossRef]

Other

C. R. Saraceno, O. H. Heckl, C. R. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser,” Appl Phys B published online (2012) DOI 10.1007/s00340-012-4900-5
[CrossRef]

C. Y. Teisset, H. Fattahi, A. Sugita, L. Turi, X. Gu, O. Pronin, V. Pervak, F. Kraus, and A. Apolonski, “700 nJ broad-band MHz optical parametric amplifier,” in Ultra Fast Optics (UFO VII) and High Field Short Wavelength (HFSW XIII) Conference Program, Arcachon, (2009), Conf. Proc., pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Development of pulse energies in the past 12 years directly from unamplified mode-locked oscillators. All pulse energies above 11 µJ in ambient air were obtained using the active multipass cell and Yb:YAG as gain medium. Recent high power Yb:Lu2O3 thin-disk results are at significantly lower pulse energies and shorter pulse length.

Fig. 2
Fig. 2

Schematic of the AMC laser setup. The beam forming part (red and blue) is shown on the left, containing the thin-film polarizer (TFP), a quarter wave plate (QWP) and the semiconductor saturable absorber mirror (SESAM). The right part shows the AMC (green) that reimaged the thin-disk onto itself, where for simplicity of view only 4 passes are shown. It contained the 6 GTI type mirrors that are the only source for negative dispersion.

Fig. 3
Fig. 3

Left: Autocorrelation (AC) trace and sech2 fit of the measured pulses with 41.4 µJ pulse energy at 11 passes through the multipass cell. The output power was 145 W at 571 W of pump power and 3.511 MHz repetition rate. Assuming an ideal sech2 pulse the corresponding pulse width is 1120 fs. Right: Spectrum of the 41.4 µJ pulses on a logarithmic and linear scale. The FWHM spectral width is 1.06 nm at a center wavelength of 1030.0 nm. The sech2 shape indicates for clean soliton mode-locking

Fig. 4
Fig. 4

Left: Output power and optical to optical efficiency versus pump power. Right: Spectral width and pulse length versus output power. The pulse length is inversely proportional to the output power, indicating for soliton mode-locking as the predominant pulse shaping mechanism. In mode-locked operation the spectral width increases with output power.

Fig. 5
Fig. 5

Left: Second harmonic output power and conversion efficiency versus oscillator output power. Right: Third harmonic output power and conversion efficiency at different input powers but fixed pulse length.

Metrics