Abstract

The capability of semiconductor optical amplifiers (SOA) to amplify advanced optical modulation format signals is investigated. The input power dynamic range is studied and especially the impact of the SOA alpha factor is addressed. Our results show that the advantage of a lower alpha-factor SOA decreases for higher-order modulation formats. Experiments at 20 GBd BPSK, QPSK and 16QAM with two SOAs with different alpha factors are performed. Simulations for various modulation formats support the experimental findings.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).
  2. R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).
  3. D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).
  4. D. A. Francis, S. P. DiJaili, and J. D. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America,2001), paper PD13.
  5. C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” J. Lightwave Technol. 25, 1466–1473 (2007).
  6. H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).
  7. J. Yu and P. Jeppesen, “Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter,” J. Lightwave Technol. 19, 1316–1325 (2001).
  8. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).
  9. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006).
  10. M. Sauer and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America,2006), paper CThY2.
  11. E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant envelope WDM signals,” IEEE J. Quantum Electron. 44, 403–409 (2008).
  12. J. D. Downie and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS2008, paper WX3.
  13. P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. B. Khurgin, “Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2004), paper MF70.
  14. X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).
  15. H. Takeda, N. Hashimoto, T. Akashi, H. Narusawa, K. Matsui, K. Mori, S. Tanaka, and K. Morito, “Wide range over 20 dB output power control using semiconductor optical amplifier for 43.1 Gbps RZ-DQPSK signal,” 35th European Conference on Optical Communication,2009. ECOC 2009, paper 5.3.4, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287100&isnumber=5286960 .
  16. T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
    [PubMed]
  17. R. Bonk, G. Huber, T. Vallaitis, R. Schmogrow, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OML4.
  18. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=29634&isnumber=1269 .
  19. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
    [PubMed]
  20. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010).
    [PubMed]
  21. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
    [PubMed]
  22. R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).
  23. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25, 891–900 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621277&isnumber=33924 .
  24. W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).
  25. A. Borghesani, “Semiconductor optical amplifiers for advanced optical applications,” International Conference on Transparent Optical Networks, ICTON2006, 119–122.
  26. A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).
  27. A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).
  28. S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).
  29. A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).
  30. A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).
  31. V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).
  32. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).
  33. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).
  34. C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858–860 (2004).
  35. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

2012

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

2011

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

2010

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010).
[PubMed]

2008

2007

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25, 891–900 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621277&isnumber=33924 .

C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” J. Lightwave Technol. 25, 1466–1473 (2007).

2006

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006).

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).

2005

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

2004

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858–860 (2004).

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).

2003

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

2001

1998

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

1994

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).

1989

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=29634&isnumber=1269 .

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Andonovic, I.

Andrekson, P. A.

Armstrong, I.

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Berg, T. W.

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Bimberg, D.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[PubMed]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[PubMed]

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

Bonk, R.

Brenot, R.

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Bucholtz, F.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).

Cabot, S.

Capua, A.

Chandrasekhar, S.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Ciaramella, E.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant envelope WDM signals,” IEEE J. Quantum Electron. 44, 403–409 (2008).

Cotter, D.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

D’Errico, A.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant envelope WDM signals,” IEEE J. Quantum Electron. 44, 403–409 (2008).

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Danielsen, S. L.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

Davies, D. A. O.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Donnelly, J. P.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Donzella, V.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant envelope WDM signals,” IEEE J. Quantum Electron. 44, 403–409 (2008).

Dorrer, C.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858–860 (2004).

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Duan, G. H.

Duan, G.-H.

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Eisenstein, G.

Ellis, A.

Essiambre, R.-J.

Freude, W

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[PubMed]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25, 891–900 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621277&isnumber=33924 .

Giles, C. R.

Giller, R.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Guetlein, J.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Jaques, J. J.

Jeppesen, P.

Joergensen, C.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

Johannisson, P.

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

Juodawlkis, P. W.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Kang, I.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858–860 (2004).

Kelly, A. E.

Kim, J.

Kishi, N.

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).

Klamkin, J.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

Koos, C

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[PubMed]

Kovsh, A. R.

Krestnikov, I. L.

Laemmlin, M.

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, and D. Bimberg, “Static gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Express 16(11), 8269–8279 (2008).
[PubMed]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[PubMed]

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Ledentsov, N. N.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

Lelarge, F.

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Leuthold, J

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010).
[PubMed]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008).
[PubMed]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25, 891–900 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621277&isnumber=33924 .

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Li, J.

Li, J. S.

Liebich, S.

Liu, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Loh, W.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Lu, G.-W.

Lucek, J. K.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).

Magnusdottir, I.

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Maitra, A.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Manning, R. J.

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).

Marculescu, A.

Marom, D. M.

Matsuura, M.

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).

Meuer, C.

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Michie, C.

Mikhrin, S. S.

Mikkelsen, B.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

Mørk, J.

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

O’Reilly, E. P.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

O'Donnell, F. J.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Olsson, N. A.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=29634&isnumber=1269 .

Plant, J. J.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Poulton, C. G.

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Qiu, J. X.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).

Ram, R. J.

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Ryf, R.

Schmeckebier, H.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Sjödin, M.

Sköld, M.

Stubkjaer, K. E.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

Su, Y.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Sunnerud, H.

Sygletos, S.

Tan, H. N.

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).

Tombling, C.

Tromberg, B.

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Urick, V. J.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).

Uskov, A. V.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Vallaitis, T.

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

Vorreau, P.

Wang, J.

Webb, R. P.

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

Wei, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Westlund, M.

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

Winzer, P. J.

Wolfson, D.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

Yu, J.

Zhao, J.

Electron. Lett.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30, 1233–1235 (1994).

IEEE J. Quantum Electron.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant envelope WDM signals,” IEEE J. Quantum Electron. 44, 403–409 (2008).

W. Loh, J. J. Plant, J. Klamkin, J. P. Donnelly, F. J. O'Donnell, R. J. Ram, and P. W. Juodawlkis, “Noise figure of Watt-class ultralow-confinement semiconductor optical amplifiers,” IEEE J. Quantum Electron. 47, 66–75 (2011).

A. V. Uskov, T. W. Berg, and J. Mørk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 40, 306–320 (2004).

IEEE J. Sel. Top. Quantum Electron.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007).

IEEE Photon. Technol. Lett.

C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16, 858–860 (2004).

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64 QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

R. Giller, R. J. Manning, and D. Cotter, “Gain and phase recovery of optically excited semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18, 1061–1063 (2006).

A. V. Uskov, E. P. O’Reilly, R. J. Manning, R. P. Webb, D. Cotter, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On ultrafast switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers,” IEEE Photon. Technol. Lett. 16, 1265–1267 (2004).

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16, 2374–2376 (2004).

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012).

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10, 1241–1243 (1998).

IEEE Photonics J.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C Koos, W Freude, and J Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3, 1039–1053 (2011).

J. Lightwave Technol.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=29634&isnumber=1269 .

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 8, 2593–2602 (2010).

J. Yu and P. Jeppesen, “Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter,” J. Lightwave Technol. 19, 1316–1325 (2001).

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22, 186–192 (2004).

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711–4728 (2006).

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25, 891–900 (2007), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1621277&isnumber=33924 .

C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” J. Lightwave Technol. 25, 1466–1473 (2007).

S. Sygletos, R. Bonk, T. Vallaitis, A. Marculescu, P. Vorreau, J. S. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, “Filter assisted wavelength conversion with quantum-dot SOAs,” J. Lightwave Technol. 28, 882–897 (2010).

Opt. Commun.

A. V. Uskov, E. P. O’Reilly, M. Laemmlin, N. N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248, 211–219 (2005).

A. V. Uskov, J. Mørk, B. Tromberg, T. W. Berg, I. Magnusdottir, and E. P. O’Reilly, “On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers,” Opt. Commun. 227, 363–369 (2003).

Opt. Express

Other

A. Borghesani, “Semiconductor optical amplifiers for advanced optical applications,” International Conference on Transparent Optical Networks, ICTON2006, 119–122.

M. Sauer and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America,2006), paper CThY2.

D. A. Francis, S. P. DiJaili, and J. D. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America,2001), paper PD13.

H. Takeda, N. Hashimoto, T. Akashi, H. Narusawa, K. Matsui, K. Mori, S. Tanaka, and K. Morito, “Wide range over 20 dB output power control using semiconductor optical amplifier for 43.1 Gbps RZ-DQPSK signal,” 35th European Conference on Optical Communication,2009. ECOC 2009, paper 5.3.4, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287100&isnumber=5286960 .

R. Bonk, G. Huber, T. Vallaitis, R. Schmogrow, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OML4.

J. D. Downie and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS2008, paper WX3.

P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. B. Khurgin, “Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2004), paper MF70.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Constellation diagrams showing the limitations of the signal quality for amplification of a 4QAM (QPSK) data signal. (a) The input power into the SOA is very low resulting in a low OSNR at the output of the amplifier. The constellation diagram of the 4QAM signal shows a symmetrical broadening of the constellation points. This broadening due to ASE noise causes a low signal quality. (b) Error-free amplification of the data signal is observed for a non-saturating input power. (c) For high input powers a nonlinear phase change induced by a refractive index change within the SOA causes a rotation of the constellation points. This rotation causes a reduction of the signal quality.

Fig. 2
Fig. 2

Response of a saturated SOA in reaction to a BPSK (2QAM) signal with two possible transitions from symbol to symbol. Phase errors induced by power transitions from one BPSK constellation point to the other. (a) BPSK constellation diagram with in-phase (I) and quadrature component (Q) of the electric field. Solid line: zero-crossing transition; dashed line: constant-envelope transition. (b) Time dependencies for the two types of power transitions. SOA response that affects the (c) gain and (d) refractive index which leads to an SOA-induced phase deviation ∆φ. SOAs with lower alpha factors induce less amplitude-to-phase conversion and therefore amplify the electric input field with a better phase fidelity. BPSK constellation diagram after amplification with a saturated SOA for (e) zero-crossing transition (for two alpha factors) and (f) constant-envelope transition.

Fig. 3
Fig. 3

Constellation diagrams and transition probabilities for different modulation formats. (a) Constellation diagrams with amplitude and phase transitions for BPSK, QPSK and 16QAM data signals. (b) Transition probability as a function of the amplitude change normalized to the largest possible amplitude transition. The probability of large transitions decreases for higher order modulation formats.

Fig. 4
Fig. 4

Simulation environment for investigating the impact of the SOA alpha factor on signals with advanced optical modulation formats. The transmitter (Tx) generates OOK, (D)BPSK, (D)QPSK, or 16QAM data signals. Virtual switches define a reference path for back-to-back (BtB) simulations. The rate-equation based SOA model inside the dashed box provides a chip gain G and takes into account fiber-to-chip losses αCoupling of −3.5 dB per facet, gain-independent amplified spontaneous emission (ASE) noise, and phase changes. Depending of the transmitted data format, the receiver (Rx) is chosen.

Fig. 5
Fig. 5

Comparison of SOA characteristics for devices which only differ in the alpha factor. An SOA with an alpha factor of 2 (black) and an SOA with an alpha factor of 4 (blue) are used for the simulation. (a) FtF gain Gff as a function of the SOA input power is shown. The unsaturated FtF gain Gf0 is 13.5 dB at a wavelength of 1554 nm, and the 3 dB saturation input power is −2 dBm. (b) FtF noise figure as a function of SOA input power. (c) Phase change ∆φ ≤ 0 as a function of SOA input power. The SOA with larger alpha factor causes larger magnitudes |∆φ| if the SOA becomes saturated.

Fig. 6
Fig. 6

Error-vector magnitude (EVM), power penalty (PP) and input power dynamic range (IPDR) for non-differential (QAM) and differential (DPSK, DQPSK) modulation formats. For QAM, subfigures (a) and (b) illustrate the EVM definition and the determination of the IPDR for given EVMlim. For DPSK and DQPSK, subfigures (c) and (d) clarify what is meant with the power penalty for a given Q2 of 15.6 dB, and how the IPDR is determined from a PP of 2 dB.

Fig. 7
Fig. 7

Simulations illustrate an IPDR advantage for SOA with αH = 2 over SOA with αH = 4, if signals with advanced modulation format and large power transitions between the constellation points are amplified. (a)-(c) EVM as a function of SOA input power for BPSK, QPSK and 16QAM signals (d)-(f) Power penalty as a function of SOA input power for OOK, DPSK and DQPSK signals. The red curve in subfigure (f) assumes a constant-envelope modulation and holds for both, αH = 2 and αH = 4. The IPDR is indicated by red arrows, and the corresponding EVMlim and PP of 2 dB are shown by the gray horizontal lines.

Fig. 8
Fig. 8

Comparison of QD and bulk SOA characteristics. (a) FtF gain, FtF noise figure and in-fiber saturation input powers for a 1.55 µm QD SOA (black) and bulk SOA (blue). For equal current densities all characteristics are comparable. (b) Phase response (left vertical axis) in relation to an 8 ps wide impulse (right vertical axis). The bulk SOA shows 1.7 times the peak-to-peak phase change of the QD SOA. (c) Q2 factor for amplification of a 43 Gbit/s RZ OOK data signal for different device input powers. Since the dynamic range (IPDR indicated by red arrow, gray horizontal line is Q2 = 15.6 dB) of both SOA is almost identical, the device performance differs only in the alpha factor.

Fig. 9
Fig. 9

Experimental setup, comprising a software-defined multi-format transmitter encoding 20 GBd BPSK, QPSK and 16 QAM signals onto an optical carrier. The signal power level is adjusted before launching it to the QD or bulk SOA. The optical modulation analyzer receives, post-processes, and analyzes the data.

Fig. 10
Fig. 10

EVM for different modulation formats and two types of SOA versus input power. (a) Low alpha-factor QD SOA shows an IPDR enhancement of 8 dB compared to bulk SOA for BPSK modulation. In both cases the IPDR exceeds 36 dB. (b) IPDR enhancement at QPSK is reduced, but still 4 dB. An IPDR of 29 dB is found. (c) No difference is found at 16QAM. The IPDR for both devices is 13 dB. The BtB EVMs are indicated by the red dashed lines. The IPDRs are shown by the red arrows, and the gray horizontal lines represent the EVMlim. (d)-(f) Constellation diagrams for various SOA input powers which are associated with the respective subfigure (a)-(c) immediately above. Bulk SOA (upper row) and QD SOA (lower row) are compared.

Fig. 11
Fig. 11

Magnitude error and phase error increase as compared to BtB measurements. The degradation for low input powers is due to OSNR limitations. The upper limit is due to phase errors for (a) BPSK and (b) QPSK. Magnitude errors are insignificant. (c) At 16QAM the phase error is accompanied by gain saturation inducing magnitude errors. The alpha-factor impact decreases due to a lower probability for large power transitions.

Tables (3)

Tables Icon

Table 1 Parameter values of the SOA model [26] used in the simulations.

Tables Icon

Table 2 Devices with lower alpha factor show larger IPDR for modulation formats with high probability of large power transitions. IPDR for various modulation formats for a symbol rate of 28 GBd for two SOA devices only differing in the alpha factor are shown. The evaluation method, i. e., PP or EVM and the corresponding BER limit are defined. The results of the IPDR difference are also presented. The advantage of a low alpha-factor device manifests in a large IPDR difference.

Tables Icon

Table 3 Comparison of measurement and simulation results for the difference of the IPDR for ithe lower alpha-factor SOA and the higher alpha-factor SOA for various modulation formats. The evaluation method, i. e. PP or EVM and the corresponding BER limit are defined according to Section 3. Measurements and simulations show the same tendency in spite of the fact that the symbol rate had to be reduced for the measurement from 28 GBd (as assumed for the simulations) to 20 GBd due to limitations in the available equipment. The pound character (#) indicates measured results for 28 GBd NRZ DQPSK taken from our previous work [16].

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α H = n eff /N 1 2 k 0 g ff /N 2 k 0 Δ n eff Δ g ff = 2Δφ Δ g ff L = 2Δφ Δ( ln G ff ) = 2Δφ Δ( lnG ) .
NF= 1 G +2 n sp G1 G .
P sat in =( h f s 2ln(2) G 0 2 A Γ 1 a 1 τ c ),
EVM m = σ err | E t,m | , σ err 2 = 1 I i=1 I | E err,i | 2 , E err,i = E r,i E t,i .
IPDR=10log( P 2 / P 1 ).

Metrics