Abstract

Thin films of BixCe3-xFe5O12 with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of BixCe3-xFe5O12 epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
    [CrossRef]
  2. A. K. Zvezdin and V. A. Kotov, Modern magneto-optics and magneto optical materials, (IOP publishing, Bristol, 1997).
  3. S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
    [CrossRef]
  4. Z. C. Xu, “Magnetooptic caracteristiques of BiTbGaIG film/TbYbBiIG bulk crystal composite structure in 1550 nm band,” Appl. Phys. Lett. 89(3), 032501 (2006).
    [CrossRef]
  5. R. G. David, Fiber Optic Reference Guide, 3rd ed. (Boston Focal Press, 2002), p. 5.
  6. G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
    [CrossRef]
  7. T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in magneto-optics, Proceedings. Int. Symp. Magneto-optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).
  8. B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
    [CrossRef]
  9. M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
    [CrossRef]
  10. Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).
  11. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
    [CrossRef]
  12. R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
    [CrossRef]
  13. M. Vasiliev, K. E. Alameh, V. A. Kotov, and Y. T. Lee, “ Nanostructured engineered materials with high magneto-optic performance for integrated photonics applications,” in Proceedings. IEEE Photonics Global @Singapore, (IPGC 2008).
  14. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
    [CrossRef]
  15. L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
    [CrossRef]
  16. M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
    [CrossRef]
  17. D. C. Hutchings, “Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective,” J. Phys. D. 36(18), 2222–2229 (2003).
    [CrossRef]
  18. T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
    [CrossRef]
  19. J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys. 91(10), 7296–7298 (2002).
    [CrossRef]
  20. M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
    [CrossRef]
  21. J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
    [CrossRef]
  22. B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett. 88(6), 061116 (2006).
    [CrossRef]
  23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  24. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [CrossRef]
  25. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
    [CrossRef]
  26. T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
    [CrossRef]
  27. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Application of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B 22, 240–253 (2005).
    [CrossRef]
  28. H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
    [CrossRef]
  29. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
    [CrossRef] [PubMed]
  30. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [CrossRef]
  31. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of thin films (Wiley Interscience, 1994).
  32. A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol. 20(4), S1–S12 (2005).
    [CrossRef]
  33. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials, (John Wiley & Sons, Inc, 2007), Chap. 1.
  34. M. Chandrasekhar, “Structural and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on LAO with homo-epitaxial layer for tunable applications,” Int. J. Mod. Phys. B 18(15), 2153–2168 (2004).
    [CrossRef]
  35. M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, B. Holmes, M. Sorel, D. Hutchings, A. Pignolet, and R. Morandotti, “Crystallization of yttrium –iron garnet (YIG) in thin films: nucleation and growth aspect” in Proceedings of Materials and Hyperintegration Challenges in Next-Generation Interconnect technology, MRS proceedings (2007), 1036–M04–19.
  36. M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, A. Pignolet, R. Morandotti, B. Holmes, M. Sorel, and D. Hutchings, “Effect of the Foreign Phases on the crystallization and Growth of Magnetooptic garnet Films, in conference on Lasers and Electro-Optics/Quantum Electronics and Laser science Conference and Photonic Applications Systems Technologies, OSA technical digest (CD) (Optical Society of America, 2008) paper CThM5.
  37. W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
    [CrossRef]
  38. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
    [CrossRef]
  39. S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids 3(1–2), 30–36 (1957).
    [CrossRef]
  40. M. O. Scully and M. S. Zubary, Quantum optics, (Cambridge University Press, 1997).

2011

J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

2010

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

2009

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

2008

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

2007

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

2006

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett. 88(6), 061116 (2006).
[CrossRef]

Z. C. Xu, “Magnetooptic caracteristiques of BiTbGaIG film/TbYbBiIG bulk crystal composite structure in 1550 nm band,” Appl. Phys. Lett. 89(3), 032501 (2006).
[CrossRef]

2005

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[CrossRef]

A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol. 20(4), S1–S12 (2005).
[CrossRef]

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Application of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B 22, 240–253 (2005).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

2004

M. Chandrasekhar, “Structural and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on LAO with homo-epitaxial layer for tunable applications,” Int. J. Mod. Phys. B 18(15), 2153–2168 (2004).
[CrossRef]

2003

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

D. C. Hutchings, “Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective,” J. Phys. D. 36(18), 2222–2229 (2003).
[CrossRef]

2002

J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys. 91(10), 7296–7298 (2002).
[CrossRef]

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[CrossRef]

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

2000

1999

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

1998

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

1997

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[CrossRef]

1986

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

1976

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

1957

S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids 3(1–2), 30–36 (1957).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

Abell, J. S.

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Adyam, V.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

Arnold, J. M.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Atkinson, R.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Bahlmann, N.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

Bolduc, M.

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Bono, D.

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

Bryce, A. C.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Chakalov, R. A.

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Chan, K. Y.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Chandra Sekhar, M.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Chandrasekhar, M.

M. Chandrasekhar, “Structural and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on LAO with homo-epitaxial layer for tunable applications,” Int. J. Mod. Phys. B 18(15), 2153–2168 (2004).
[CrossRef]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Dotsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Dötsch, H.

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Ferrera, M.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Fuji, T.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Futakuchi, N.

Geller, S.

S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids 3(1–2), 30–36 (1957).
[CrossRef]

Gerhardt, R.

Gilleo, M. A.

S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids 3(1–2), 30–36 (1957).
[CrossRef]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[CrossRef]

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Guillot, M.

J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys. 91(10), 7296–7298 (2002).
[CrossRef]

Hammer, M.

Harada, T.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Harnagea, C.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Heinrich, A.

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Herbort, M.

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Hertel, P.

Holmes, B. M.

B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett. 88(6), 061116 (2006).
[CrossRef]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Hutchings, D. C.

B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett. 88(6), 061116 (2006).
[CrossRef]

D. C. Hutchings, “Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective,” J. Phys. D. 36(18), 2222–2229 (2003).
[CrossRef]

Hwang, J. Y.

J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
[CrossRef]

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Inoue, M.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Kahl, S.

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Kang, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Kawano, K.

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Khartsev, S. I.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[CrossRef]

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Kim, H. S.

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

Kim, J. S.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, S. I.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, Y. H.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Kong, G.

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

Korner, T.

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Körner, T.

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

Krysa, A.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Lacklison, D. E.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

Lee, W. K.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Leitenmeier, S.

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Levy, M.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Li, Q.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Linzon, Y.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Lux, R.

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Marsh, J. H.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[CrossRef]

Mizumoto, T.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[CrossRef] [PubMed]

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Morandotti, R.

J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
[CrossRef]

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Naito, Y.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Nakano, Y.

Ohtomo, A.

A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol. 20(4), S1–S12 (2005).
[CrossRef]

Oochi, K.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Ostorero, J.

J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys. 91(10), 7296–7298 (2002).
[CrossRef]

Pignolet, A.

J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
[CrossRef]

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Popkov, A. F.

Rajamani, A.

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Razzari, L.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Roocks, P.

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Salter, I. W.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Scott, G. B.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

Shinjo, N.

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[CrossRef]

Shoji, Y.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

Sorel, M.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Speakman, S. A.

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

Stritzker, B.

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Strizker, B.

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

Tan, W. K.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Tate, A.

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[CrossRef]

Taussig, A. R.

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Teggart, B.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Tou, T. Y.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Tsukazaki, A.

A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol. 20(4), S1–S12 (2005).
[CrossRef]

Weckerle, M.

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

Wilkens, L.

H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Application of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B 22, 240–253 (2005).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Wong, H. Y.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

Xu, Z. C.

Z. C. Xu, “Magnetooptic caracteristiques of BiTbGaIG film/TbYbBiIG bulk crystal composite structure in 1550 nm band,” Appl. Phys. Lett. 89(3), 032501 (2006).
[CrossRef]

Yap, S. S.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Yin, S.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[CrossRef] [PubMed]

Yong, T. K.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Zaezjev, M.

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

Zhu, Y.

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

Zhuromskyy, O.

Appl. Opt.

Appl. Phys. A. Mater. Sci. Process.

W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process. 100(2), 561–568 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[CrossRef]

M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett. 94(18), 181916 (2009).
[CrossRef]

J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett. 99(5), 051916 (2011).
[CrossRef]

B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett. 88(6), 061116 (2006).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158 (2000).
[CrossRef]

Z. C. Xu, “Magnetooptic caracteristiques of BiTbGaIG film/TbYbBiIG bulk crystal composite structure in 1550 nm band,” Appl. Phys. Lett. 89(3), 032501 (2006).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett. 87(12), 122504 (2005).
[CrossRef]

T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640–1642 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett. 17(8), 1677–1679 (2005).
[CrossRef]

IEEE Trans. Magn.

G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn. 12(4), 292–311 (1976).
[CrossRef]

S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn. 43(9), 3656–3660 (2007).
[CrossRef]

IEEE. Trans. Mag.

M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag. 42(10), 3093–3095 (2006).
[CrossRef]

Int. J. Mod. Phys. B

M. Chandrasekhar, “Structural and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on LAO with homo-epitaxial layer for tunable applications,” Int. J. Mod. Phys. B 18(15), 2153–2168 (2004).
[CrossRef]

J. Appl. Phys.

L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys. 103(7), 07D138 (2008).
[CrossRef]

R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys. 85(8), 5768–5770 (1999).
[CrossRef]

S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys. 91(12), 9556–9560 (2002).
[CrossRef]

T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys. 103(7), 07B337 (2008).
[CrossRef]

J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys. 91(10), 7296–7298 (2002).
[CrossRef]

J. Korean Phys. Soc.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

J. Lightwave Technol.

T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol. 4(3), 347–352 (1986).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids 3(1–2), 30–36 (1957).
[CrossRef]

J. Phys. D Appl. Phys.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

J. Phys. D.

D. C. Hutchings, “Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective,” J. Phys. D. 36(18), 2222–2229 (2003).
[CrossRef]

Nat. Photonics

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[CrossRef]

Semicond. Sci. Technol.

A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol. 20(4), S1–S12 (2005).
[CrossRef]

Other

R. Eason, Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials, (John Wiley & Sons, Inc, 2007), Chap. 1.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of thin films (Wiley Interscience, 1994).

M. O. Scully and M. S. Zubary, Quantum optics, (Cambridge University Press, 1997).

M. Vasiliev, K. E. Alameh, V. A. Kotov, and Y. T. Lee, “ Nanostructured engineered materials with high magneto-optic performance for integrated photonics applications,” in Proceedings. IEEE Photonics Global @Singapore, (IPGC 2008).

T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in magneto-optics, Proceedings. Int. Symp. Magneto-optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).

A. K. Zvezdin and V. A. Kotov, Modern magneto-optics and magneto optical materials, (IOP publishing, Bristol, 1997).

R. G. David, Fiber Optic Reference Guide, 3rd ed. (Boston Focal Press, 2002), p. 5.

M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, B. Holmes, M. Sorel, D. Hutchings, A. Pignolet, and R. Morandotti, “Crystallization of yttrium –iron garnet (YIG) in thin films: nucleation and growth aspect” in Proceedings of Materials and Hyperintegration Challenges in Next-Generation Interconnect technology, MRS proceedings (2007), 1036–M04–19.

M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, A. Pignolet, R. Morandotti, B. Holmes, M. Sorel, and D. Hutchings, “Effect of the Foreign Phases on the crystallization and Growth of Magnetooptic garnet Films, in conference on Lasers and Electro-Optics/Quantum Electronics and Laser science Conference and Photonic Applications Systems Technologies, OSA technical digest (CD) (Optical Society of America, 2008) paper CThM5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The out of plane X –ray diffraction patterns of BixCe3-xFe5O12 epitaxial films with different partial pressures of gases and a deposition temperature 680-720°C used.

Fig. 2
Fig. 2

(a) The variation of atomic composition as a function of argon pressure for BixCe3-xFe5O12 epitaxial films and (b) The variation of atomic concentration as a function of substrate temperature (Ts) of BixCe3-xFe5O12 epitaxial films (x = 0.7, 0.8). The optimized regions are marked by vertical lines. These line show crystalline BixCe3-xFe5O12 phase and other regions display secondary phase. The elements (O2, Fe, Ce, and Bi) can be identified with colors and their stoichiometry regions are shown. c) EDX spectrum of BixCe3-xFe5O12 epitaxial films, after optimization with argon treatment. (An EDX spectrum normally displays peaks corresponding to the energy levels for which the most X-rays had been received. Each of these peaks is unique to an atom, and therefore corresponds to a single element).

Fig. 3
Fig. 3

a) Out of plane-X-ray diffraction of BixCe3-xFe5O12 epitaxial (x = 0.7) film and inset showing the rocking scan of the film b) In plane X –ray diffraction pattern of BixCe3-xFe5O12 (x = 0.7) epitaxial layer scan (top) c) GGG substrate (640) reflection scan.

Fig. 4
Fig. 4

Transmittance spectrum is plotted as a function of wavelength for BixCe3-xFe5O12 films a) x = 0.8 b) x = 0.7) films at a partial pressure of 300 m.Torr argon.

Fig. 5
Fig. 5

a) Cross sectional scanning electron microscope (SEM) image of BixCe3-xFe5O12 epitaxial film (x = 0.7). Note that its thickness is marked at the interface. b) Scanning electron microscope (SEM) image of BixCe3-xFe5O12 epitaxial film (x = 0.8) c) AFM topography of the BixCe3-xFe5O12 (x = 0.7) epitaxial film d) AFM topography of the BixCe3-xFe5O12 (x = 0.8) epitaxial film e) AFM roughness details of the epitaxial (x = 0.8) film. All the films were treated in argon 300 m. torr.

Fig. 6
Fig. 6

Magnetization dependence on temperature of the BixCe3-xFe5O12 (x = 0.8) epitaxial film. The inset shows the inverse susceptibility as a function of temperature and its Curie-Weiss dependence.

Fig. 7
Fig. 7

The phase diagram shows the controlled process parameters required for a giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films. A narrow window of deposition, transmittance, optimized Faraday rotation and unsuitable crystallography are identified for all the partial pressures used in the deposition of BixCe3-xFe5O12 epitaxial films on both compositions.

Fig. 8
Fig. 8

The Faraday rotation is plotted as a function of magnetic field -B (Tesla) for BixCe3-xFe5O12 epitaxial films (x = 0.8). Samples are treated in an argon (300 m.Torr) pressure. The experimental data are represented with open diamonds, (measured with GMW-USA magnet) and the solid line represents the theoretical calculation based on the density matrix method. Inset shows the paramagnetic –spectral transitions.

Tables (2)

Tables Icon

Table 1 Deposition Parameters of BixCe3-xFe5O12 Epitaxial Films

Tables Icon

Table 2 Physical Parameters Related to BixCe3-xFe5O12 Epitaxial Films (Under Optimized Conditions)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Θ F = ω p L 4nc Re( n + 2 n 2 )
Θ F = ω p L 4nc Re( χ + χ )
χ + = N 2 n 2 ( μ 21 ρ 21 E p )
χ = N 2 n 2 ( μ 31 ρ 31 E p )
Θ F =( N ω p L 16c n 3 )Re( i( ρ 3 ρ 1 )μ 2 21 d 12 i( ρ 2 ρ 1 ) μ 31 2 d 13 d 13 d 12 )

Metrics