Abstract

We present polymer (PMMA) cladded chalcogenide (As2Se3) hybrid microwires that realize optical parametric four-wave mixing (FWM) with wavelength conversion bandwidth as broad as 190 nm and efficiency as high as 21 dB at peak input power levels as low as 70 mW. This represents 3-30 × increase in bandwidth and 30-50 dB improvement in conversion efficiency over previous demonstrations in tapered and microstructured chalcogenide fibers with the results agreeing well with the simulations. These properties, combined with small foot-print (10 cm length), low loss (<4 dB), ease of fabrication, and the transparency of As2Se3 from near-to-mid-infrared regions make this device a promising building block for lasers, optical instrumentation and optical communication devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
    [CrossRef] [PubMed]
  4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
    [CrossRef]
  5. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
    [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  7. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
    [CrossRef] [PubMed]
  8. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
    [CrossRef]
  9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
    [CrossRef] [PubMed]
  10. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
    [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]
  12. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  13. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [CrossRef] [PubMed]
  14. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
    [CrossRef] [PubMed]
  15. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
    [CrossRef] [PubMed]
  16. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  17. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
    [CrossRef]
  18. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
    [CrossRef]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  20. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
    [CrossRef] [PubMed]
  21. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [CrossRef] [PubMed]
  22. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B 16(11), 1904–1908 (1999).
    [CrossRef]
  23. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
    [CrossRef]
  24. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
    [CrossRef] [PubMed]
  25. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett. 99(6), 0611091 (2011).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).
  27. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
    [CrossRef]
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).
  29. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [CrossRef]
  30. J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
    [CrossRef]
  31. V. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, “Nonlinear modal parameters of optical fibers: a full-vectorial approach,” J. Opt. Soc. Am. B 12(10), 1933–1941 (1995).
    [CrossRef]
  32. C. Baker, R. Ahmad, and M. Rochette, “Simultaneous Measurement of the Core Diameter and the Numerical Aperture in Dual-Mode Step-Index Optical Fibers,” J. Lightwave Technol. 29(24), 3834–3837 (2011).
    [CrossRef]
  33. R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express 18(19), 19983–19993 (2010).
    [CrossRef] [PubMed]
  34. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett. 36(15), 2886–2888 (2011).
    [CrossRef] [PubMed]
  35. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
    [CrossRef]
  37. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  38. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]

2012 (1)

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

2011 (7)

2010 (4)

2008 (6)

2006 (2)

2005 (3)

2004 (2)

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

2002 (2)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[CrossRef] [PubMed]

2000 (1)

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[CrossRef]

1999 (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B 16(11), 1904–1908 (1999).
[CrossRef]

1997 (1)

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[CrossRef]

1995 (1)

1992 (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

1977 (1)

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[CrossRef]

Aggarwal, I. D.

Ahmad, R.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[CrossRef]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[CrossRef]

Baker, C.

Bartal, G.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Bramerie, L.

Brès, C.-S.

Brilland, L.

Chartier, T.

Chatigny, S.

Choi, D.-Y.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Chu, S. T.

Ciaramella, E.

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[CrossRef]

Costa e Silva, M.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Eggleton, B. J.

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Farsi, A.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Fischer, J.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

Fontaine, M.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Fridman, M.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Fujiwara, S.

Fukuda, H.

Gaeta, A.

Gaeta, A. L.

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gai, X.

Gay, M.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Godbout, N.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

Harbold, J. M.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[CrossRef]

Hirao, K.

Hodelin, J.

Ilday, F. Ö.

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Itabashi, S.-I.

Kanbara, H.

Karlsson, M.

P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol. 15(11), 2051–2058 (1997).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Lacroix, S.

Lamont, M.

Lamont, M. R.

Le, S. D.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

Lenglé, K.

Lenz, G.

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

Lipson, M.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Luan, F.

Luther-Davies, B.

Madden, S.

Magi, E.

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Méchin, D.

Morandotti, R.

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Moss, D. J.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Nguyen, D. M.

Nguyen, V. Q.

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol. 24(1), 22–28 (2006).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

Okawachi, Y.

Palomba, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Park, Y.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Pasquazi, A.

Pelusi, M. D.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Radic, S.

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Rochette, M.

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

Santo, R.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shaw, L. B.

Shimizugawa, Y.

Shoji, T.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Slusher, R. E.

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[CrossRef]

Sugimoto, N.

Swalen, J.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

Tacke, M.

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

Takahashi, J.-I.

Takahashi, M.

Tanaka, K.

Thual, M.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

Toupin, P.

Trillo, S.

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[CrossRef]

Troles, J.

Tsuchizawa, T.

Turner, A. C.

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Tzolov, V.

van Howe, J.

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Wang, Y.

Watanabe, T.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

Wiberg, A. O. J.

Willner, A.

Wise, F. W.

Xu, C.

Yamada, K.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Yin, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

Zhang, S.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Zhang, X.

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Zlatanovic, S.

Appl. Phys. Lett. (3)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24(7), 308 (1974).
[CrossRef]

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett. 99(6), 0611091 (2011).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84(6), 900–902 (2004).
[CrossRef]

IBM J. Res. Develop. (1)

J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett. 4(1), 69–72 (1992).
[CrossRef]

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 12(7), 849–851 (2000).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett. 17(7), 1474–1476 (2005).
[CrossRef]

IEEE, J. Sel. Top. Quantum. Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron. 8(3), 506–520 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Nat. Mater. (1)

S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11(1), 34–38 (2011).
[CrossRef] [PubMed]

Nat. Photonics (4)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics 5, 141 (2011).

J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature 481(7379), 62–65 (2012).
[CrossRef] [PubMed]

Opt. Express (11)

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005).
[CrossRef] [PubMed]

C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express 19(26), B621–B627 (2011).
[CrossRef] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express 18(4), 3858–3863 (2010).
[CrossRef] [PubMed]

C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18(12), 12391–12398 (2010).
[CrossRef] [PubMed]

R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express 18(19), 19983–19993 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science 286(5444), 1523–1528 (1999).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).

J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion and Nonlinearity curves. Calculated values of second (β2) and fourth (β4) order dispersion profiles at λP = 1536 nm, and the waveguide nonlinear coefficient (γ) as a function of As2Se3 wire diameter for the cases of air and PMMA cladding.

Fig. 2
Fig. 2

DFWM output spectra and idler wavelength conversion efficiencies. (a) Optical spectra of the pump, signal and the generated idler corresponding to the signal tuned in the wavelength range 1460-1650 nm. The As2Se3 wire diameter was 1.01 µm, PP = 0.3 W, PS,in = −10.5 dBm and the microwire length was 10 cm. Only two sampled signal wavelengths are shown for clarity whereas one sample of idler spectrum per nm is given. (b)-(g) Idler conversion efficiencies spectra for a range of As2Se3 microwire diameters and a fixed length of 10 cm. The diameter value and the peak pump power used in the experiments are included as inset in each figure. Red (dotted) curves represent the experimental data, with the simulation fit denoted by the blue (continuous) lines.

Fig. 3
Fig. 3

DFWM device performance characteristics. (a) Measured idler conversion efficiency plotted as a function of the peak input pump power for a microwire with 1.01 µm diameter. (b) Measured idler peak power plotted as a function of input signal power for the same microwire.

Appendix
Appendix

Fig. AF1. Calculated (a) idler conversion efficiency and (b) signal gian for phase matched DFWM process in 10 cm long chalcogenides (As2Se3, As2S3), silicon, bismuth and silica fibers/waveguides. The low propagation loss with a high nonlinear coefficient in As2Se3 microwires allows the maximum conversion efficiency/signal gain in a compact scheme. The parameters used in these simulations are provided in the Table 1 given above.

Tables (1)

Tables Icon

Table 1 Comparison of highly nonlinear fibers made from silica and bismuth, waveguide made from As2S3 chalcogenide and silicon and the microwires made from As2Se3 for a given foot-print of the devices.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 γ P P     Δ k L
Δ k L = β 2 ( Δ ω ) 2 1 12 β 4 ( Δ ω ) 4
g = ( γ P P ) 2 ( Δ k / 2 ) 2 = γ P P Δ k L ( Δ k L / 2 ) 2
G i = P I , o u t / P S , i n = ( γ P p / g ) 2 sinh 2 ( g L e f f )

Metrics