Abstract

We demonstrate fiber Bragg gratings written in polymer fiber for use in the THz window for the first time. A KrF excimer laser operating at 248 nm was used to inscribe notch-type gratings in single component Topas subwavelength fiber. A transmission loss at the centre wavelength of the grating of 60 dB is observed in short gratings containing only 192 notches. Experimental results and modeling are presented. The gratings are expected to find use in THz signal filtering and chemical or biosensing applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
    [CrossRef]
  2. H. Zhong, A. Redo-Sanchez, and X. C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system,” Opt. Express 14(20), 9130–9141 (2006).
    [CrossRef] [PubMed]
  3. F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
    [CrossRef]
  4. S. Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34(19), 2921–2923 (2009).
    [CrossRef] [PubMed]
  5. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  6. M. Gerhard, C. Imhof, and R. Zengerle, “Low-loss compact high-Q 3D THz grating resonator based on a hybrid silicon metallic slit waveguide,” Opt. Express 18(11), 11707–11712 (2010).
    [CrossRef] [PubMed]
  7. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, Boca Raton, FL, USA, 2006).
  8. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  10. I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
    [CrossRef]
  11. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [CrossRef] [PubMed]
  12. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
    [CrossRef]

2010

2009

2008

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

2006

2005

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

1994

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

1987

1986

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

Adam, A. J.

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Bang, O.

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Bennion, I.

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, H. W.

Chen, L. J.

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Gerhard, M.

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Imhof, C.

Jastrow, F. C.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Jepsen, P. U.

Kao, T. F.

Kleine-Ostmann, T.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Koch, M.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

Kurner, T.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Lo, S. Z. A.

Lu, J. Y.

Munter, K.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Murphy, T. E.

Nielsen, K.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Piesiewicz, R.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

Planken, P. C.

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

Rasmussen, H. K.

Redo-Sanchez, A.

Reid, D. C. J.

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

Rowe, C. J.

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

Sakuda, K.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Stewart, W. J.

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

Sun, C. K.

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Yamada, M.

Zengerle, R.

Zhang, X. C.

Zhong, H.

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Appl. Opt.

Electron. Lett.

F. C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,” Electron. Lett. 44(3), 213–214 (2008).
[CrossRef]

I. Bennion, D. C. J. Reid, C. J. Rowe, and W. J. Stewart, “High reflectivity monomode fibre grating filters,” Electron. Lett. 22(6), 341–343 (1986).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibers,” Electron. Lett. 30(19), 1620–1622 (1994).
[CrossRef]

Nature

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266– S280 (2005).
[CrossRef]

Other

M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC Press, Boca Raton, FL, USA, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of a polymer fiber extruder

Fig. 2
Fig. 2

Schematic diagram of THz FBG inscription

Fig. 3
Fig. 3

Photograph of FBG in Topas polymer fiber

Fig. 4
Fig. 4

Experimental schematic of FBG measurement

Fig. 5
Fig. 5

Transmission spectra of FBGs at (a) 265 GHz and (b) 400 GHz

Fig. 6
Fig. 6

Reflection spectrum of 265 GHz FBG

Fig. 7
Fig. 7

Schematic diagram of the geometrical model in HFSS

Fig. 8
Fig. 8

Modeled and experimental results for different notch depths (d) and widths (w). (a) d = 164 μm, w = 190 μm. (b) d = 277 μm, w = 234 μm.

Fig. 9
Fig. 9

Comparisons between simulated and experiment transmissions for two orthogonal polarizations (d = 179 μm, w = 206 μm)

Fig. 10
Fig. 10

Simulated transmissions with different fiber diameters (d = 277 μm, w = 234 μm)

Fig. 11
Fig. 11

Simulated transmissions of degraded FBG due to smaller fiber diameter at (a) one end and (b) the middle (d = 277 μm, w = 234 μm)

Metrics