Abstract

We demonstrate high-finesse plasmonic metamaterial with strong resonant response in the near-IR spectral range fabricated using a thin low-loss film of gold monocrystal. The monocrystal was grown using specially formulated simplified crystal growth procedure based on epitaxial deposition, which makes it readily accessible to both plasmonics and metamaterials communities.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006).
    [CrossRef] [PubMed]
  2. N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
    [CrossRef] [PubMed]
  3. D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
    [CrossRef]
  4. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
    [CrossRef] [PubMed]
  5. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
    [CrossRef] [PubMed]
  6. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
    [CrossRef] [PubMed]
  7. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
    [CrossRef] [PubMed]
  8. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  9. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
    [CrossRef]
  10. A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
    [CrossRef]
  11. B. Lewis, “Physical processes in epitaxial growth,” Thin Solid Films7(3-4), 179–217 (1971).
    [CrossRef]
  12. K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
    [CrossRef]
  13. D. J. Stirland, “Electron-bombardment-induced changes in the growth and epitaxy of evaporated gold films,” Appl. Phys. Lett.8(12), 326–328 (1966).
    [CrossRef]
  14. W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969).
    [CrossRef]
  15. Model SPEC. SOU/150103/TPG, capable of depositing thin multi-layers of metallic and dielectric layers (specially customized for University of Southampton).
  16. N. W. Ashcroft and N. D. Mermin, Solid State Physics, 7th ed. (Wiley, New York, 1996).
  17. A. R. West, Basic Solid State Chemistry (Wiley, New York, 1994).
  18. M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
    [CrossRef]
  19. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
    [CrossRef]
  20. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
    [CrossRef] [PubMed]
  21. J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
    [CrossRef]
  22. N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
    [CrossRef]
  23. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  24. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  25. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  26. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
    [CrossRef]
  27. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
    [CrossRef] [PubMed]
  28. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009).
    [CrossRef]
  29. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
    [CrossRef] [PubMed]
  30. A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
    [CrossRef] [PubMed]
  31. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
    [CrossRef]
  32. E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
    [CrossRef]
  33. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
    [CrossRef] [PubMed]
  34. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5(2), 329–349 (1976).
    [CrossRef]
  35. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
    [CrossRef] [PubMed]

2011

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

2010

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

2009

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

2008

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

2007

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

2006

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006).
[CrossRef] [PubMed]

2003

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

1993

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
[CrossRef]

1976

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5(2), 329–349 (1976).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1971

B. Lewis, “Physical processes in epitaxial growth,” Thin Solid Films7(3-4), 179–217 (1971).
[CrossRef]

1970

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

1969

W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969).
[CrossRef]

1966

K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
[CrossRef]

D. J. Stirland, “Electron-bombardment-induced changes in the growth and epitaxy of evaporated gold films,” Appl. Phys. Lett.8(12), 326–328 (1966).
[CrossRef]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
[CrossRef] [PubMed]

Ashburn, P.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Baker, J. H.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Bauer, E.

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
[CrossRef]

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
[CrossRef] [PubMed]

Blanchard, N. P.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Bobb, D. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

Boden, S. A.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

Boltasseva, A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Cai, W.

Chen, W. T.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

Chettiar, U. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Convey, D.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Dancy, J.

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

De Angelis, F.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

Di Fabrizio, E.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

Drachev, V. P.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
[CrossRef] [PubMed]

Fu, Y. H.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

Gavrilenko, A. V.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

Gavrilenko, V. I.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

Green, A.

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

Green, A. K.

K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
[CrossRef]

Hayton, D. J.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Hegner, M.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
[CrossRef]

Hilfiker, J. N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Jenkins, T. E.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Jesser, W. A.

W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Kildishev, A. V.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Kunz, K. M.

K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
[CrossRef]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Lewis, B.

B. Lewis, “Physical processes in epitaxial growth,” Thin Solid Films7(3-4), 179–217 (1971).
[CrossRef]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5(2), 329–349 (1976).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Martin, D. S.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Matthews, J. W.

W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969).
[CrossRef]

Mayy, M.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Mead, P.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Narimanov, E. E.

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006).
[CrossRef] [PubMed]

Ni, X. J.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Nikolaenko, A. E.

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

Noginov, M. A.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Peck, R. L.

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

Plum, E.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Polman, A.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Semenza, G.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
[CrossRef]

Shalaev, V. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Singh, N.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Smith, C.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Smith, S. M.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Stirland, D. J.

D. J. Stirland, “Electron-bombardment-induced changes in the growth and epitaxy of evaporated gold films,” Appl. Phys. Lett.8(12), 326–328 (1966).
[CrossRef]

Tanaka, K.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

Tiwald, T.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Tompkins, H. G.

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

Tsai, D. P.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

Verhoeven, J.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Veselago, V. G.

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006).
[CrossRef] [PubMed]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

Wagner, P.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
[CrossRef]

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

Weightman, P.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Xiao, S. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yuan, H. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009).
[CrossRef]

E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express17(10), 8548–8551 (2009).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zhu, G.

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

D. J. Stirland, “Electron-bombardment-induced changes in the growth and epitaxy of evaporated gold films,” Appl. Phys. Lett.8(12), 326–328 (1966).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008).
[CrossRef]

D. A. Bobb, G. Zhu, M. Mayy, A. V. Gavrilenko, P. Mead, V. I. Gavrilenko, and M. A. Noginov, “Engineering of low-loss metal for nanoplasmonic and metamaterials applications,” Appl. Phys. Lett.95(15), 151102 (2009).
[CrossRef]

J. Cryst. Growth

W. A. Jesser and J. W. Matthews, “Growth of copper, silver, and gold on twelve Alkali halides cleaved in vacuum,” J. Cryst. Growth5(2), 83–89 (1969).
[CrossRef]

J. Opt.

E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt.13(5), 055102 (2011).
[CrossRef]

J. Phys. Chem. Ref. Data

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5(2), 329–349 (1976).
[CrossRef]

J. Phys. Condens. Matter

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material,” J. Phys. Condens. Matter21(14), 144211 (2009).
[CrossRef] [PubMed]

Krist. Tech.

A. Green, E. Bauer, R. L. Peck, and J. Dancy, “Stages of epitaxial film formation,” Krist. Tech.5(3), 345–366 (1970).
[CrossRef]

Nano Lett.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett.10(10), 4222–4227 (2010).
[CrossRef] [PubMed]

Nat. Mater.

V. G. Veselago and E. E. Narimanov, “The left hand of brightness: past, present and future of negative index materials,” Nat. Mater.5(10), 759–762 (2006).
[CrossRef] [PubMed]

Nat. Photonics

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Nature

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Photon. News

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–27 (2009).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B80(4), 041102 (2009).
[CrossRef]

Phys. Rev. Lett.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett.104(22), 223901 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

A. E. Nikolaenko, F. De Angelis, S. A. Boden, N. Papasimakis, P. Ashburn, E. Di Fabrizio, and N. I. Zheludev, “Carbon nanotubes in a photonic metamaterial,” Phys. Rev. Lett.104(15), 153902 (2010).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101(22), 226806 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi

K. M. Kunz, A. K. Green, and E. Bauer, “On the formation of single crystal films of F.C.C. metals on alkali halide cleavage planes in ultrahigh vacuum,” Phys. Status Solidi18(1), 441–457 (1966).
[CrossRef]

Phys. Status Solidi, C Conf. Crit. Rev.

N. P. Blanchard, C. Smith, D. S. Martin, D. J. Hayton, T. E. Jenkins, and P. Weightman, “High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy,” Phys. Status Solidi, C Conf. Crit. Rev.0(8), 2931–2937 (2003).
[CrossRef]

Science

N. I. Zheludev, “Applied physics. The road ahead for metamaterials,” Science328(5978), 582–583 (2010).
[CrossRef] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science331(6015), 290–291 (2011).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Surf. Sci.

M. Hegner, P. Wagner, and G. Semenza, “Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy,” Surf. Sci.291(1-2), 39–46 (1993).
[CrossRef]

Thin Solid Films

J. N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S. M. Smith, J. H. Baker, and H. G. Tompkins, “Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry,” Thin Solid Films516(22), 7979–7989 (2008).
[CrossRef]

B. Lewis, “Physical processes in epitaxial growth,” Thin Solid Films7(3-4), 179–217 (1971).
[CrossRef]

Other

Model SPEC. SOU/150103/TPG, capable of depositing thin multi-layers of metallic and dielectric layers (specially customized for University of Southampton).

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 7th ed. (Wiley, New York, 1996).

A. R. West, Basic Solid State Chemistry (Wiley, New York, 1994).

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Gold film epitaxially grown on LiF. (a) Scanning electron microscope image of the film. Inset shows the signs of crystalline structure observed in the film at an early stage of deposition: the film is seen to grow from cubic islands with some gaps and stitches appearing along <100> directions. (b) Surface roughness of the film imaged with an atomic force microscope. Colours show amplitude of the height fluctuations. (c) 1D x-ray diffraction pattern of gold film/LiF with (200) peaks. A small peak at 38° is associated with (111) reflection of gold film, and is due is to imperfect condensation on the facet. (d) Imaginary part of the dielectric constant of gold as a function of wavelength. Green circles show values retrieved for the epitaxially grown film using spectroscopic ellipsometry (large point spread above 1300 nm is due to reduced sensitivity of our spectrometer in the near-IR). The reference data are represented by red squares (bulk single crystal [22]), black circles (thin film with large monocrystal domains [23]) and black open squares (polycrystalline thin film [24]). Inset shows the measured and reference data for the real part of the dielectric constant.

Fig. 2
Fig. 2

High-finesse infrared plasmonic metamaterial. (a) Scanning electron microscope image of complex asymmetrically-split ring pattern milled in epitaxial gold film. Yellow dashed box indicates elementary unit cell of the periodic pattern (size/wavelength ratio is less than 1/4). Inset shows 3D view of the milled structure. (b) Reflection spectra of the plasmonic metamaterial. Green circles show experimentally measured values, while black curve represents the result of simulation. Inset shows orientation of incident polarization with respect to the metamaterial pattern. (c) Transmission spectra of the plasmonic metamaterial. Green circles show experimentally measured values, black curve - result of simulation. Inset shows the model of the structure’s unit cell used in simulations.

Metrics