Abstract

We present a multilayer device which allows the control of Surface Plasmon (SP) propagation properties (propagation length and extension). A simple modification on an inner air gap thickness strongly affects SP propagation mode due to coupling with Parallel-Plate (PP) mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
    [CrossRef]
  2. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [CrossRef] [PubMed]
  3. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
    [CrossRef] [PubMed]
  4. Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18(23), 23756–23762 (2010).
    [CrossRef] [PubMed]
  5. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  6. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17(19), 17088–17101 (2009).
    [CrossRef] [PubMed]
  7. I. P. Kaminow, W. L. Mammel, and H. P. Weber, “Metal-clad optical waveguides: Analytical and experimental study,” Appl. Opt. 13(2), 396–405 (1974).
    [CrossRef] [PubMed]
  8. Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface Plasmon waveguiding,” Appl. Phys. Lett. 91(11), 111112 (2007).
    [CrossRef]
  9. M. A. Ordal, R. J. Bell, R. W. Alexander,, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  10. M. S. P. Lucas, “The effects of surface layers on the conductivity of gold films,” Thin Solid Films 2(4), 337–352 (1968).
    [CrossRef]
  11. J. K. Bal and S. Hazra, “Evolution of interdiffused Gaussian-shape nanolayer in Au-Si(111) system at ambient condition,” Defect Diffusion Forum 297-301, 1133–1139 (2010).
  12. L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
    [CrossRef]
  13. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, ed. Palik (Academic Press, 1985).

2010 (2)

Y. Bian, Z. Zheng, Y. Liu, J. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18(23), 23756–23762 (2010).
[CrossRef] [PubMed]

J. K. Bal and S. Hazra, “Evolution of interdiffused Gaussian-shape nanolayer in Au-Si(111) system at ambient condition,” Defect Diffusion Forum 297-301, 1133–1139 (2010).

2009 (1)

2008 (2)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[CrossRef] [PubMed]

2007 (1)

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface Plasmon waveguiding,” Appl. Phys. Lett. 91(11), 111112 (2007).
[CrossRef]

2006 (1)

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

1985 (1)

1984 (1)

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

1974 (1)

1968 (1)

M. S. P. Lucas, “The effects of surface layers on the conductivity of gold films,” Thin Solid Films 2(4), 337–352 (1968).
[CrossRef]

Alexander,, R. W.

Averitt, R. D.

Azad, A. K.

Bal, J. K.

J. K. Bal and S. Hazra, “Evolution of interdiffused Gaussian-shape nanolayer in Au-Si(111) system at ambient condition,” Defect Diffusion Forum 297-301, 1133–1139 (2010).

Bell, R. J.

Bian, Y.

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Brillson, L. J.

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Chen, H.-T.

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Gómez Rivas, J.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Gong, M.

Gossard, A. C.

Grischkowsky, D.

Haring Bolivar, P.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Hazra, S.

J. K. Bal and S. Hazra, “Evolution of interdiffused Gaussian-shape nanolayer in Au-Si(111) system at ambient condition,” Defect Diffusion Forum 297-301, 1133–1139 (2010).

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Jeon, T.-I.

Kaminow, I. P.

Katnani, A. D.

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

Kelly, M.

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

Kurz, H.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Kuttge, M.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Liu, Y.

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Long, L. L.

Lu, H.

Lucas, M. S. P.

M. S. P. Lucas, “The effects of surface layers on the conductivity of gold films,” Thin Solid Films 2(4), 337–352 (1968).
[CrossRef]

Mammel, W. L.

Margaritondo, G.

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

O’Hara, J. F.

Ordal, M. A.

Querry, M. R.

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Sun, Z.

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface Plasmon waveguiding,” Appl. Phys. Lett. 91(11), 111112 (2007).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Taylor, A. J.

Trugman, S. A.

Weber, H. P.

Zheng, Z.

Zhou, T.

Zhu, J.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface Plasmon waveguiding,” Appl. Phys. Lett. 91(11), 111112 (2007).
[CrossRef]

J. Gómez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sánchez-Gil, “Low-frequency active surface Plasmon optics on semiconductors,” Appl. Phys. Lett. 88(8), 082106 (2006).
[CrossRef]

Defect Diffusion Forum (1)

J. K. Bal and S. Hazra, “Evolution of interdiffused Gaussian-shape nanolayer in Au-Si(111) system at ambient condition,” Defect Diffusion Forum 297-301, 1133–1139 (2010).

J. Vac. Sci. Technol. (1)

L. J. Brillson, A. D. Katnani, M. Kelly, and G. Margaritondo, “Photoemission studies of atomic redistribution at gold-silicon and aluminium-silicon interfaces,” J. Vac. Sci. Technol. 2(2), 551–555 (1984).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-poriton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (1)

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Thin Solid Films (1)

M. S. P. Lucas, “The effects of surface layers on the conductivity of gold films,” Thin Solid Films 2(4), 337–352 (1968).
[CrossRef]

Other (1)

D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, ed. Palik (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schema of the device.

Fig. 2
Fig. 2

a) and b) respectively real and imaginary part of k in the case of d = 0.

Fig. 3
Fig. 3

Effective index of the modes, b) is zoomed.

Fig. 4
Fig. 4

Energy distribution of specific modes and frequency given in Fig. 3 b). a) for mode in upper air region, b) for modes confined in substrate.

Fig. 5
Fig. 5

a) Inverse of air extension and b) propagation length of SPSi-Gold and “pure” SP.

Fig. 6
Fig. 6

SP wave vector at each metal-dielectric interface, in the coupled case (thin metal).

Fig. 7
Fig. 7

Real part of k for two different air layer thicknesses. a) and b) for d = 0.1 mm and 1 mm. Only the 20 first PP modes are plotted.

Fig. 8
Fig. 8

Im[k] decrease of PP modes with increase of d. a) and b) in case of d = 0.1 and 1 mm.

Fig. 9
Fig. 9

Coupling occurring at 0.920 THz between SP and 6th PP modes around d = 6.5 mm. Effective index of the SPAir-Gold in solid black, the 6th PP in dashed purple and the 7th PP in dotted blue lines.

Fig. 10
Fig. 10

Coupling occurring at 0.920 THz between SP and 6th PP modes around d = 6.5 mm. Im[k] of SPAir-Gold in solid black, 6th PP in dashed purple and 7th PP in dotted blue lines.

Fig. 11
Fig. 11

Increase of energy ratio in the upper air region with inner air layer thickness change, a) and b) for d = 0.1 mm and 1 mm.

Fig. 12
Fig. 12

Coupling occurring at 0.920 THz between SP, 6th and 7th PP modes around d = 9.5 mm.

Fig. 13
Fig. 13

In the case d = 6.5 mm around 6th forbidden SP frequency. Left axis is the propagation direction and right axis the energy ratio in upper air layer, right axis the real part of the wave number. Solid lines are the SPAir-Gold and dashed lines the PP mode.

Fig. 14
Fig. 14

Air side extension of “SPAir-Gold”(solid lines) and PP mode (dashed lines).

Fig. 15
Fig. 15

Energy distribution of the SPAir-Gold for change of the air layer thickness.

Fig. 16
Fig. 16

Different set-up for coupling evidence between SP and PP modes.

Fig. 17
Fig. 17

Change of the air extension of SP mode, solid line for d = 0, and dashed line for d = 10 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H 0 cos( κ 3 u+ δ 3 )cos( δ 4 )cos[ κ 2 (u+s)+ δ 2 ]exp[γ(zus)]w(x,t)u+s<z, H 0 cos( κ 3 u+ δ 3 )cos( δ 4 )cos( κ 2 z+ δ 2 )w(x,t)u<z<u+s, H 0 cos( κ 2 u+ δ 2 )cos( δ 4 )cos( κ 3 z+ δ 3 )w(x,t)0<z<u, H 0 cos( κ 2 u+ δ 2 )cos( δ 3 )cos( κ 4 z+ δ 4 )w(x,t)d<z<0, H 0 cos( κ 2 u+ δ 2 )cos( δ 3 )cos( κ 4 d δ 4 )exp[ γ 5 (z+d)]w(x,t)z<d,
ε 1 = ε 4 =1, ε 2 = ε 5 = ω p 2 / ( ω 2 +i ω τ ω) , ε 3 =C+B/ ( λ μm 2 +A) .
Δf=c/ (2 n Si u).
Re[ κ 3 ]u=nπ,
ucos( θ c ) n Si ω f /c =nπ.
Δf=c/ 2 L eff .
2ucos(θ) n Si ω/c + φ up + φ dwn =2nπ,
φ dwn =arg[ r 35 ], φ up =arg[ r 32 + r 21 exp(2i κ 2 s) 1+ r 32 r 21 exp(2i κ 2 s) ],
ucos( θ c ) n Si ω /c =nπ.

Metrics