Abstract

A novel fiber reference optical readout method was proposed in the bi-material micro cantilever infrared imaging system, which consists of an infrared imaging channel, an optical readout channel and a fiber reference channel. The fiber reference channel is used to monitor the intensity fluctuation of the light source, and provide a signal to correct the distortion of the infrared images from the optical readout channel. Comparing with the typical optical readout method without any references, the noise equivalent temperature difference (NETD) of such an infrared imaging system with the fiber reference optical readout method can be reduced by about 33% and edges of the IR images become clearer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
    [CrossRef]
  2. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
    [CrossRef]
  3. A. Rogalski, “Infrared detectors: Status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
    [CrossRef]
  4. J. Zhao, “High Sensitivity Photomechanical MW-LWIR Imaging using an Uncooled MEMS Microcantilever Array and Optical Readout,” Proc. SPIE5783, 506–513 (2005).
    [CrossRef]
  5. H. Torun and H. Urey, “Uncooled Thermo-mechanical Detector Array with Optical Readout,” Proc. SPIE5957, 59570O, 59570O-9 (2005).
    [CrossRef]
  6. J. P. Salerno, “High Frame Rate Imaging Using Uncooled Optical Readout Photomechanical IR Sensor,” Proc. SPIE6542, 65421D, 65421D-9 (2007).
    [CrossRef]
  7. Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett.32(6), 594–596 (2007).
    [CrossRef] [PubMed]
  8. M. Liu, Y. Zhao, L. Dong, X. Yu, X. Liu, M. Hui, J. You, and Y. Yi, “Holographic illumination in optical readout focal plane array infrared imaging system,” Opt. Lett.34(22), 3547–3549 (2009).
    [CrossRef] [PubMed]

2009

2007

J. P. Salerno, “High Frame Rate Imaging Using Uncooled Optical Readout Photomechanical IR Sensor,” Proc. SPIE6542, 65421D, 65421D-9 (2007).
[CrossRef]

Z. Miao, Q. Zhang, Z. Guo, X. Wu, and D. Chen, “optical readout method for microcantilever array sensing and its sensitivity analysis,” Opt. Lett.32(6), 594–596 (2007).
[CrossRef] [PubMed]

2005

J. Zhao, “High Sensitivity Photomechanical MW-LWIR Imaging using an Uncooled MEMS Microcantilever Array and Optical Readout,” Proc. SPIE5783, 506–513 (2005).
[CrossRef]

H. Torun and H. Urey, “Uncooled Thermo-mechanical Detector Array with Optical Readout,” Proc. SPIE5957, 59570O, 59570O-9 (2005).
[CrossRef]

2003

A. Rogalski, “Infrared detectors: Status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

1997

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

1996

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

Chen, D.

Datskos, P. G.

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

Dong, L.

Guo, Z.

Hui, M.

Lai, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Liu, M.

Liu, X.

Majumdar, A.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Miao, Z.

Oden, P. I.

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

Perazzo, T.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Rogalski, A.

A. Rogalski, “Infrared detectors: Status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

Salerno, J. P.

J. P. Salerno, “High Frame Rate Imaging Using Uncooled Optical Readout Photomechanical IR Sensor,” Proc. SPIE6542, 65421D, 65421D-9 (2007).
[CrossRef]

Shi, Z.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Thundat, T.

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

Torun, H.

H. Torun and H. Urey, “Uncooled Thermo-mechanical Detector Array with Optical Readout,” Proc. SPIE5957, 59570O, 59570O-9 (2005).
[CrossRef]

Urey, H.

H. Torun and H. Urey, “Uncooled Thermo-mechanical Detector Array with Optical Readout,” Proc. SPIE5957, 59570O, 59570O-9 (2005).
[CrossRef]

Varesi, J.

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Warmack, R. J.

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

Wu, X.

Yi, Y.

You, J.

Yu, X.

Zhang, Q.

Zhao, J.

J. Zhao, “High Sensitivity Photomechanical MW-LWIR Imaging using an Uncooled MEMS Microcantilever Array and Optical Readout,” Proc. SPIE5783, 506–513 (2005).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett.

P. I. Oden, P. G. Datskos, T. Thundat, and R. J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever,” Appl. Phys. Lett.69(21), 3277–3279 (1996).
[CrossRef]

J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett.71(3), 306–308 (1997).
[CrossRef]

Opt. Lett.

Proc. SPIE

J. Zhao, “High Sensitivity Photomechanical MW-LWIR Imaging using an Uncooled MEMS Microcantilever Array and Optical Readout,” Proc. SPIE5783, 506–513 (2005).
[CrossRef]

H. Torun and H. Urey, “Uncooled Thermo-mechanical Detector Array with Optical Readout,” Proc. SPIE5957, 59570O, 59570O-9 (2005).
[CrossRef]

J. P. Salerno, “High Frame Rate Imaging Using Uncooled Optical Readout Photomechanical IR Sensor,” Proc. SPIE6542, 65421D, 65421D-9 (2007).
[CrossRef]

Prog. Quantum Electron.

A. Rogalski, “Infrared detectors: Status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The novel optical readout infrared FPA imaging system with fiber reference channel.

Fig. 2
Fig. 2

Image region of CCD.

Fig. 3
Fig. 3

Energy on the spectrum plane.

Fig. 4
Fig. 4

Images of an electric iron three meters away.

Fig. 5
Fig. 5

Images of a scissors three meters away in front of the background at 70°C.

Fig. 6
Fig. 6

Energy from different unit of the FPA on the spectrum plane.

Fig. 7
Fig. 7

Impact of different unit of the FPA on the spectrum plane.

Tables (1)

Tables Icon

Table 1 Calculated Values of NETD

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ΔE= E a E s
Δ E 0 = E 0 E t
E q0 E qt = E 0 E at
E at = E qt E q0 × E 0
Δ E t = E a E s = E at E t
Δ E t = E qt E q0 × E 0 E t
ΔE= E q0 E qt ( E qt E q0 × E 0 E t )= E 0 E q0 E qt × E t
NETD=ΔT× V n V s
NETD=ΔT× V n V s =ΔT×k× G n G max

Metrics