Abstract

We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
    [CrossRef] [PubMed]
  2. D. L. Boiko, “Towards r-space Bose-Einstein condensation of photonic crystal exciton polaritons,” PIERS online 4, 831–837 (2008).
    [CrossRef]
  3. P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72, 076501 (2009).
    [CrossRef]
  4. P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
    [CrossRef]
  5. D. L. Boiko and P. P. Vasil’ev, “Longitudinal polariton condensation and superradiant emission in semiconductor edge-emitting laser structures,” Preprint arXiv:1112.1298 (2011).
  6. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
    [CrossRef]
  7. N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
    [CrossRef]
  8. M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
    [CrossRef]
  9. M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
    [CrossRef]
  10. L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Usp. 42, 107–148 (1999).
    [CrossRef]
  11. A. V. Andreev, V. I. Yemel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (Institute of Physics Publishing, 1993).
  12. V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
    [CrossRef]
  13. A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).
  14. P. P. Vasil’ev, “Superfluorescence in semiconductor lasers,” Quantum Electron. 27, 860–865 (1997).
    [CrossRef]
  15. P. P. Vasil’ev, “A role of high gain of the medium in the supperradiance generation and observation of coherent effects in semiconductor lasers,” Quantum Electron. 29, 842–846 (1999).
    [CrossRef]
  16. P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
    [CrossRef]
  17. P. P. Vasil’ev, “Conditions and possible mechanism of condensation of e-h pairs in bulk GaAs at room temperature,” Phys. Status Solidi B 241, 1251–1260 (2004).
    [CrossRef]
  18. A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).
  19. S. V. Zaitsev and A. M. Georgievskii, “Collective superradiation effects in InGaAsP /InP liquid phase epitaxy-grown quasi-0-dimentional nanostructures,” Jpn. J. Appl. Phys. 36, 4209–4211 (1997).
    [CrossRef]
  20. S. V. Zaitsev and A. M. Georgievskii, “Lifetime of nonequilibrium carriers in semiconductors from the standpoint of collective interaction during radiative recombination,” Semiconductors 32, 332–334 (1998).
    [CrossRef]
  21. P. P. Vasil’ev and I. V. Smetanin, “Condensation of electron-hole pairs in a degenerate semiconductor at room temperature,” Phys. Rev. B 74, 125206 (2006).
    [CrossRef]
  22. L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
    [CrossRef]
  23. M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
    [CrossRef]
  24. J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).
  25. W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
    [CrossRef]
  26. I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express 19, 17114–17120 (2011).
    [CrossRef] [PubMed]
  27. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (J. Wiley & Sons, 1969).
  28. M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor 1asers,” J. Appl. Phys. 58, 1689–1692 (1985).
    [CrossRef]
  29. D. L. Boiko and P. P. Vasilev, “Dicke superradiance in GaN quantum wells,” in Proc. 2010 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Kyoto, Japan, 2010, pp. 103–104.
  30. M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.
  31. M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.
  32. C. H. Henry, “Theory of the linewidth of semiconductor laser,” IEEE Quantum Electron. 18, 259–264 (1982).
    [CrossRef]
  33. A. Crubellier, S. Liberman, D. Mayou, P. Pillet, and M. G. Schweighofer, “Oscillations in superradiance with long-duration pumping pulses,” Opt. Lett. 7, 16–18 (1982).
    [CrossRef] [PubMed]
  34. L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
    [CrossRef] [PubMed]
  35. D. L. Boiko, “Type-I and type-II superradiance in edge emitting laser cavities,” European Semiconductor Laser Workshop ESLW (2011) (Lausanne, Switzerland, September 23–24, 2011) B2.
  36. K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductro lasers-Part II,” IEEE Quantum Electron. 19, 1102–1109 (1983).
    [CrossRef]

2011 (3)

D. L. Boiko and P. P. Vasil’ev, “Longitudinal polariton condensation and superradiant emission in semiconductor edge-emitting laser structures,” Preprint arXiv:1112.1298 (2011).

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express 19, 17114–17120 (2011).
[CrossRef] [PubMed]

2010 (1)

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

2009 (1)

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72, 076501 (2009).
[CrossRef]

2008 (1)

D. L. Boiko, “Towards r-space Bose-Einstein condensation of photonic crystal exciton polaritons,” PIERS online 4, 831–837 (2008).
[CrossRef]

2007 (1)

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

2006 (1)

P. P. Vasil’ev and I. V. Smetanin, “Condensation of electron-hole pairs in a degenerate semiconductor at room temperature,” Phys. Rev. B 74, 125206 (2006).
[CrossRef]

2004 (2)

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

P. P. Vasil’ev, “Conditions and possible mechanism of condensation of e-h pairs in bulk GaAs at room temperature,” Phys. Status Solidi B 241, 1251–1260 (2004).
[CrossRef]

2003 (1)

A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).

2002 (1)

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

2001 (1)

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

1999 (2)

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Usp. 42, 107–148 (1999).
[CrossRef]

P. P. Vasil’ev, “A role of high gain of the medium in the supperradiance generation and observation of coherent effects in semiconductor lasers,” Quantum Electron. 29, 842–846 (1999).
[CrossRef]

1998 (1)

S. V. Zaitsev and A. M. Georgievskii, “Lifetime of nonequilibrium carriers in semiconductors from the standpoint of collective interaction during radiative recombination,” Semiconductors 32, 332–334 (1998).
[CrossRef]

1997 (2)

S. V. Zaitsev and A. M. Georgievskii, “Collective superradiation effects in InGaAsP /InP liquid phase epitaxy-grown quasi-0-dimentional nanostructures,” Jpn. J. Appl. Phys. 36, 4209–4211 (1997).
[CrossRef]

P. P. Vasil’ev, “Superfluorescence in semiconductor lasers,” Quantum Electron. 27, 860–865 (1997).
[CrossRef]

1994 (1)

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

1992 (1)

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

1989 (1)

V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
[CrossRef]

1985 (1)

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor 1asers,” J. Appl. Phys. 58, 1689–1692 (1985).
[CrossRef]

1983 (1)

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductro lasers-Part II,” IEEE Quantum Electron. 19, 1102–1109 (1983).
[CrossRef]

1982 (3)

C. H. Henry, “Theory of the linewidth of semiconductor laser,” IEEE Quantum Electron. 18, 259–264 (1982).
[CrossRef]

A. Crubellier, S. Liberman, D. Mayou, P. Pillet, and M. G. Schweighofer, “Oscillations in superradiance with long-duration pumping pulses,” Opt. Lett. 7, 16–18 (1982).
[CrossRef] [PubMed]

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[CrossRef]

1981 (1)

M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
[CrossRef]

1973 (1)

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

1911 (1)

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Abstreiter, G.

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

Andreev, A. V.

A. V. Andreev, V. I. Yemel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (Institute of Physics Publishing, 1993).

Baldassarri Hger von Hgersthal, G.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Belyanin, A. A.

A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).

Böhm, G.

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

Boiko, D. L.

I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express 19, 17114–17120 (2011).
[CrossRef] [PubMed]

D. L. Boiko and P. P. Vasil’ev, “Longitudinal polariton condensation and superradiant emission in semiconductor edge-emitting laser structures,” Preprint arXiv:1112.1298 (2011).

D. L. Boiko, “Towards r-space Bose-Einstein condensation of photonic crystal exciton polaritons,” PIERS online 4, 831–837 (2008).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

D. L. Boiko and P. P. Vasilev, “Dicke superradiance in GaN quantum wells,” in Proc. 2010 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Kyoto, Japan, 2010, pp. 103–104.

D. L. Boiko, “Type-I and type-II superradiance in edge emitting laser cavities,” European Semiconductor Laser Workshop ESLW (2011) (Lausanne, Switzerland, September 23–24, 2011) B2.

Brown, G. J.

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

Butov, L. V.

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

Butt, R.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Carlin, J.-F.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Christmann, G.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Crubellier, A.

Deryagin, A. G.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Dorsaz, J.

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Eastham, P. R.

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

Feld, M. S.

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

Feltin, E.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Georgievskii, A. M.

S. V. Zaitsev and A. M. Georgievskii, “Lifetime of nonequilibrium carriers in semiconductors from the standpoint of collective interaction during radiative recombination,” Semiconductors 32, 332–334 (1998).
[CrossRef]

S. V. Zaitsev and A. M. Georgievskii, “Collective superradiation effects in InGaAsP /InP liquid phase epitaxy-grown quasi-0-dimentional nanostructures,” Jpn. J. Appl. Phys. 36, 4209–4211 (1997).
[CrossRef]

Gordeev, N. Y.

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

Grandjean, N.

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Gross, M.

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[CrossRef]

Grudin, A. B.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Grundy, A. J. D.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Guriev, A. I.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Haroche, S.

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor laser,” IEEE Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Herman, I. P.

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

Hiruma, T.

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

Ikeda, M.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Il’inskii, Yu. A.

A. V. Andreev, V. I. Yemel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (Institute of Physics Publishing, 1993).

Kan, H.

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

Karachinsky, L. Ya.

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

Kavokin, A. V.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Khrushchev, I. Y.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Kocharovsky, V. V.

A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).

V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
[CrossRef]

Kocharovsky, Vl. V.

V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
[CrossRef]

Kono, S.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Kuchinskii, V. I.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Kuksenkov, D. V.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Kuramoto, M.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Lagoudakis, P. G.

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Lang, R.

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor 1asers,” J. Appl. Phys. 58, 1689–1692 (1985).
[CrossRef]

Liberman, S.

Littlewood, P. B.

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

MacGillivray, J. C.

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

Mayou, D.

Men’shikov, L. I.

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Usp. 42, 107–148 (1999).
[CrossRef]

Novikov, I. I.

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

Ohta, H.

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

Oki, T.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Pantell, R. H.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (J. Wiley & Sons, 1969).

Penty, R. V.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.

Pestov, D. S.

A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).

Pillet, P.

Polder, D.

M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
[CrossRef]

Portnoi, E. L.

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Puthoff, H. E.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (J. Wiley & Sons, 1969).

Scheibenzuber, W. G.

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Schuurmans, M. F. H.

M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
[CrossRef]

Schwarz, U. T.

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Schweighofer, M. G.

Skribanowitz, N.

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

Smetanin, I. V.

I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express 19, 17114–17120 (2011).
[CrossRef] [PubMed]

P. P. Vasil’ev and I. V. Smetanin, “Condensation of electron-hole pairs in a degenerate semiconductor at room temperature,” Phys. Rev. B 74, 125206 (2006).
[CrossRef]

Sugawara, T.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Sulmoni, L.

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

Szymanska, M. H.

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

Ueno, M.

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor 1asers,” J. Appl. Phys. 58, 1689–1692 (1985).
[CrossRef]

Vahala, K.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductro lasers-Part II,” IEEE Quantum Electron. 19, 1102–1109 (1983).
[CrossRef]

Vasil’ev, P. P.

I. V. Smetanin, P. P. Vasil’ev, and D. L. Boiko, “Theory of the ultrafast mode-locked GaN lasers in a large-signal regime,” Opt. Express 19, 17114–17120 (2011).
[CrossRef] [PubMed]

D. L. Boiko and P. P. Vasil’ev, “Longitudinal polariton condensation and superradiant emission in semiconductor edge-emitting laser structures,” Preprint arXiv:1112.1298 (2011).

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72, 076501 (2009).
[CrossRef]

P. P. Vasil’ev and I. V. Smetanin, “Condensation of electron-hole pairs in a degenerate semiconductor at room temperature,” Phys. Rev. B 74, 125206 (2006).
[CrossRef]

P. P. Vasil’ev, “Conditions and possible mechanism of condensation of e-h pairs in bulk GaAs at room temperature,” Phys. Status Solidi B 241, 1251–1260 (2004).
[CrossRef]

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

P. P. Vasil’ev, “A role of high gain of the medium in the supperradiance generation and observation of coherent effects in semiconductor lasers,” Quantum Electron. 29, 842–846 (1999).
[CrossRef]

P. P. Vasil’ev, “Superfluorescence in semiconductor lasers,” Quantum Electron. 27, 860–865 (1997).
[CrossRef]

M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.

Vasilev, P. P.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.

D. L. Boiko and P. P. Vasilev, “Dicke superradiance in GaN quantum wells,” in Proc. 2010 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Kyoto, Japan, 2010, pp. 103–104.

Vrehen, Q. H. F.

M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
[CrossRef]

Weimann, G.

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

White, I. H.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.

Xia, M.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.

Yariv, A.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductro lasers-Part II,” IEEE Quantum Electron. 19, 1102–1109 (1983).
[CrossRef]

Yemel’yanov, V. I.

A. V. Andreev, V. I. Yemel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (Institute of Physics Publishing, 1993).

Yokoyama, H.

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

Zaitsev, S. V.

S. V. Zaitsev and A. M. Georgievskii, “Lifetime of nonequilibrium carriers in semiconductors from the standpoint of collective interaction during radiative recombination,” Semiconductors 32, 332–334 (1998).
[CrossRef]

S. V. Zaitsev and A. M. Georgievskii, “Collective superradiation effects in InGaAsP /InP liquid phase epitaxy-grown quasi-0-dimentional nanostructures,” Jpn. J. Appl. Phys. 36, 4209–4211 (1997).
[CrossRef]

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Zegrya, G. G.

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

Zheleznyakov, V. V.

V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
[CrossRef]

Zrenner, A.

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

Adv. At. Mol. Phys. (1)

M. F. H. Schuurmans, Q. H. F. Vrehen, and D. Polder, “Superfluorescence,” Adv. At. Mol. Phys. 17, 167–228 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kuramoto, T. Oki, T. Sugawara, S. Kono, M. Ikeda, and H. Yokoyama, “Enormously high-peak-power optical pulse generation from a single-transverse-mode GaInN blue-violet laser diode,” Appl. Phys. Lett. 96, 051102 (2010).
[CrossRef]

J. Dorsaz, D. L. Boiko, L. Sulmoni, J.-F. Carlin, W. G. Scheibenzuber, U. T. Schwarz, and N. Grandjean, “Optical bistability in InGaN-based multi-section laser diodes,” Appl. Phys. Lett. 98, 191115 (2011).

IEEE Quantum Electron. (2)

C. H. Henry, “Theory of the linewidth of semiconductor laser,” IEEE Quantum Electron. 18, 259–264 (1982).
[CrossRef]

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductro lasers-Part II,” IEEE Quantum Electron. 19, 1102–1109 (1983).
[CrossRef]

J. Appl. Phys. (2)

W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni, J. Dorsaz, and N. Grandjean, “Recombination coefficients of GaN-based laser diodes,” J. Appl. Phys. 109, 093106 (2011).
[CrossRef]

M. Ueno and R. Lang, “Conditions for self-sustained pulsation and bistability in semiconductor 1asers,” J. Appl. Phys. 58, 1689–1692 (1985).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. V. Zaitsev and A. M. Georgievskii, “Collective superradiation effects in InGaAsP /InP liquid phase epitaxy-grown quasi-0-dimentional nanostructures,” Jpn. J. Appl. Phys. 36, 4209–4211 (1997).
[CrossRef]

Laser Phys. (1)

A. A. Belyanin, V. V. Kocharovsky, and D. S. Pestov, “Novel schemes and prospects of superradiant lasing in heterostructures,” Laser Phys. 13, 161–167 (2003).

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

M. Gross and S. Haroche, “Superradiance: an essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982).
[CrossRef]

Phys. Rev. (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[CrossRef]

Phys. Rev. B (2)

P. P. Vasil’ev, H. Kan, H. Ohta, and T. Hiruma, “Experimental evidence of condensation of electron-hole pairs at room temperature during femtosecond cooperative emission,” Phys. Rev. B 64, 195209 (2001).
[CrossRef]

P. P. Vasil’ev and I. V. Smetanin, “Condensation of electron-hole pairs in a degenerate semiconductor at room temperature,” Phys. Rev. B 74, 125206 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

L. V. Butov, A. Zrenner, G. Abstreiter, G. Böhm, and G. Weimann, “Condensation of indirect excitons in coupled AlAs/GaAs quantum well,” Phys. Rev. Lett. 73, 304–307 (1994).
[CrossRef] [PubMed]

N. Skribanowitz, I. P. Herman, J. C. MacGillivray, and M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973).
[CrossRef]

S. Christopoulos, G. Baldassarri Hger von Hgersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[CrossRef] [PubMed]

Phys. Status Solidi B (2)

P. B. Littlewood, G. J. Brown, P. R. Eastham, and M. H. Szymanska, “Some remarks on the ground state of the exciton and exciton—polariton system,” Phys. Status Solidi B 234, 36–49 (2002).
[CrossRef]

P. P. Vasil’ev, “Conditions and possible mechanism of condensation of e-h pairs in bulk GaAs at room temperature,” Phys. Status Solidi B 241, 1251–1260 (2004).
[CrossRef]

Phys. Usp. (2)

L. I. Men’shikov, “Superradiance and related phenomena,” Phys. Usp. 42, 107–148 (1999).
[CrossRef]

V. V. Zheleznyakov, V. V. Kocharovsky, and Vl. V. Kocharovsky, “Polarization waves and super-radianace in active media,” Phys. Usp. 32, 835–870 (1989).
[CrossRef]

PIERS online (1)

D. L. Boiko, “Towards r-space Bose-Einstein condensation of photonic crystal exciton polaritons,” PIERS online 4, 831–837 (2008).
[CrossRef]

Preprint arXiv (1)

D. L. Boiko and P. P. Vasil’ev, “Longitudinal polariton condensation and superradiant emission in semiconductor edge-emitting laser structures,” Preprint arXiv:1112.1298 (2011).

Quantum Electron. (2)

P. P. Vasil’ev, “Superfluorescence in semiconductor lasers,” Quantum Electron. 27, 860–865 (1997).
[CrossRef]

P. P. Vasil’ev, “A role of high gain of the medium in the supperradiance generation and observation of coherent effects in semiconductor lasers,” Quantum Electron. 29, 842–846 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

P. P. Vasil’ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys. 72, 076501 (2009).
[CrossRef]

Semiconductors (2)

S. V. Zaitsev and A. M. Georgievskii, “Lifetime of nonequilibrium carriers in semiconductors from the standpoint of collective interaction during radiative recombination,” Semiconductors 32, 332–334 (1998).
[CrossRef]

L. Ya. Karachinsky, I. I. Novikov, N. Y. Gordeev, and G. G. Zegrya, “Mechanism of Dicke superradiance in semiconductor heterostructures,” Semiconductors 38, 837–841 (2004).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

A. I. Guriev, A. B. Grudin, A. G. Deryagin, S. V. Zaitsev, D. V. Kuksenkov, V. I. Kuchinskii, E. L. Portnoi, and I. Y. Khrushchev, “Generation of picosecond (τ=1.7ps) radiation pulses in InGaAsP/InP (λ=1.535μm) heterolaser with ultrafast saturable absorber,” Sov. Tech. Phys. Lett. 18, 74–76 (1992).

Other (6)

A. V. Andreev, V. I. Yemel’yanov, and Yu. A. Il’inskii, Cooperative Effects in Optics: Superradiance and Phase Transitions (Institute of Physics Publishing, 1993).

D. L. Boiko, “Type-I and type-II superradiance in edge emitting laser cavities,” European Semiconductor Laser Workshop ESLW (2011) (Lausanne, Switzerland, September 23–24, 2011) B2.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (J. Wiley & Sons, 1969).

D. L. Boiko and P. P. Vasilev, “Dicke superradiance in GaN quantum wells,” in Proc. 2010 22nd IEEE Int. Semiconductor Laser Conf. (ISLC), Kyoto, Japan, 2010, pp. 103–104.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasil’ev, “Superradiant emission from a tapered quantum-dot semiconductor diode emitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CMY2.

M. Xia, R. V. Penty, I. H. White, and P. P. Vasilev, “Superradiant emission from AlInGaAs/InGaAsP quantum-well waveguides,” in Proc. Eur. Conf. Integrated Optics, Cambridge, U.K., 2010, Paper THD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of two-section laser structure for SR emission generation.

Fig. 2
Fig. 2

Radiation dynamics in InGaN/GaN tandem cavity laser in the self Q-switching regime (a) and superradiance regime (b). Normalized carrier densities n/nt (left panels, left axis), normalized macroscopic polarizations |P±|/nt (middle panels) and radiated output power (right panels) are displayed for the gain (red curves) and absorber (blue curves) sections. The overall cavity length is 600 μm including the 120 μm long absorber section. Left panels also indicate normalized threshold carrier density nth/nt (left axis) estimated from Eq. (6) and evolution of the applied pump current normalized at its steady-state value (green curve, right axis). In (a), the pump current of 80 mA is adiabatically turned on, the time constant is 6 ns, the absorber bias is Va=0. In (b), large current of 3.7 A is switched abruptly while absorber is kept at large negative bias (Va=−5).

Fig. 3
Fig. 3

Spatiotemporal dynamics of the carrier population (a), macroscopic polarization in InGaN/GaN QWs associated with the forward (b) and backward (c) waves; field amplitudes of the forward (d) and backward (e) waves. The overall cavity length is 600 μm (z axis) including the absorber section of 120 μm long located at the coordinate origin. (Other parameters can be found in Table 1.) The time axis shows the interval of two cavity roundtrip times 2Tcav. The dynamic variables n, P± and A± are normalized at the carrier density at transparency nt and n t. The initial carrier density in the gain section n0 is 2.3·1020 cm−3. The output SR pulses emitted from the two cavity facets gain are shown in Fig. 4(b).

Fig. 4
Fig. 4

Output SR pulses at the gain section facet (red curve) and absorber section facet (blue curve) for the diffusion coefficient of spontaneous polarization noise 2DPP of (a) 8.7 10 7 n t 2 / T cav, (b) 8.7 10 6 n t 2 / T cav [the same as in Fig. 3] and (c) 8.7 10 4 n t 2 / T cav. The corresponding spontaneous emission background of 0.09 μW, 0.92 μW and 92 μW can be seen in logarithmic power scale (right panels). Other parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

Output SR pulses in a single-section cavity of 480 μm length without absorber (a) [α = 0] and without facet reflections (b) [R = 0 in Eq. (4)]. Blue and red curves are pulses emanating from the two cavity facets. The cavity length and initial carrier density are the same as in the gain section of Figs. 3 and 4.

Fig. 6
Fig. 6

Simulated peak power (a) and pulse FWHM width (b) of output SR pulses at the gain section facet (red curve) and absorber section facet (blue curve) as a function of the initial carrier density n0. Black dashed curves indicate theoretically predicted behavior Eq. (15).

Tables (1)

Tables Icon

Table 1 Model parameters for SR emission in wide-bandgap semiconductors, using data from Refs. [2426]

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A ± t ± v g A ± z = 1 2 Γ g 0 T 2 P ± 1 2 v g α i A ± .
E ± = 4 π h ¯ ω v g 2 c 2 e ± A ± sin ( ω t k z ) , A ± = N ±
P ± = c 2 h ¯ g 0 4 π h ¯ ω v g 2 T 2 e ± P ± cos ( ω t k z ) .
A + ( 0 , t ) = R A ( 0 , t ) , A ( L , t ) = R A + ( L , t ) .
P ± t = P ± T 2 + g 0 T 2 ( n n t ) A ± + Λ ± ,     n t = n τ n g 0 T 2 ( A + P + + A P ) + J ( z , t ) e q d P ± , a t = P ± , a T 2 + σ g 0 T 2 ( n a n V ) A ± + Λ ± ,     n a t = n a τ a g 0 T 2 ( A + P + + A P )
n th = n t ( 1 + α σ ( 1 V a ) 1 α + v g α i ln ( R ) / L Γ g 0 n t ( 1 α ) )
A + z = Γ 2 v g g 0 T 2 P + α i 2 A + , n ζ = n τ n g 0 T 2 A + P + + J e q d , P + ζ = P + T 2 + g 0 T 2 ( n n t ) A + .
A + = Γ v g ( α i + 2 / L * ) g 0 T 2 P + .
P + ζ = Γ g 0 ( n n cr ) T 2 v g ( α i + 2 / L * ) P + , n ζ = n τ n P + ( n n cr ) P + ζ + J e q d ,
n cr = n t + v g ( α i + 2 / L * ) Γ g 0
P + 2 = δ P 2   exp   [ 2 ζ Γ g 0 ( n 0 n cr ) T 2 v g ( α i + 2 / L * ) ] , n = n 0 e ζ / τ n P + 2 2 ( n 0 n cr ) + T 2 v g ( α i + 2 / L * ) / Γ g 0 τ n .
τ p = T 2 v g ( α i + 2 / L * ) Γ g 0 ( n 0 n cr ) ,
2 P + ζ 2 + Γ 2 g 0 2 L * 2 T 2 2 v g 2 ( 2 + α i L * ) 2   [ ( n 0 n cr ) 2 2 P + 2 ]   P + = 0.
τ c 2 τ p = 2 T 2 v g ( α i + 2 / L * ) Γ g 0 ( n 0 n cr ) , N + = A + 2 ( 0 ) = T 2 g 0 τ p 2 ( n 0 n cr ) 2
τ c 2 T 2 Γ g 0 ( n 0 n t ) , N + ( n 0 n t ) 3 / 2 .
P ± = g 0 T 2 ( n n t ) A ± + T 2 Λ ± , P ± , a = σ g 0 T 2 ( n a n V ) A ± + T 2 Λ ±
A ± t ± v g A ± z = 1 2 Γ g 0 ( n n t ) A ± + 1 2 Γ g 0 σ ( n a n V ) A ± 1 2 v g α i A ± + 1 2 Γ g 0 T 2 Λ ± , n t = n τ n g 0 ( n n t ) ( A + 2 + A 2 ) + J ( z , t ) e q d + Λ n , n a t = n a τ a σ g 0 ( n a n V ) ( A + 2 + A 2 ) + Λ n ,

Metrics