Abstract

We demonstrate the excitation control of long-range surface plasmon polaritons (LRSPs) by experiments and simulations. We find that LRSPs and short-range surface plasmon polaritons can be selectively excited by two incident beams. This mechanism enables us to realize the excitation control of LRSPs using the phase difference or the intensity ratio between the two input signals. The excitation method analyzed here can be applied to active plasmonic devices based on LRSPs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
    [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
    [CrossRef]
  4. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [CrossRef]
  5. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  7. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [CrossRef] [PubMed]
  8. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
    [CrossRef]
  9. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
    [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  11. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [CrossRef]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  14. J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
    [CrossRef] [PubMed]
  15. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
    [CrossRef]
  16. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
    [CrossRef]
  17. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
    [CrossRef]
  18. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
    [CrossRef] [PubMed]
  19. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
    [CrossRef]
  20. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004).
    [CrossRef]
  21. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  22. J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron. E90–C, 87–94 (2007).
    [CrossRef]
  23. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  24. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
    [CrossRef]
  25. H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
    [CrossRef]
  26. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
    [CrossRef]
  27. K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).
  28. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
    [CrossRef]
  29. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
    [CrossRef]
  30. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef] [PubMed]
  31. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [CrossRef] [PubMed]
  32. L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon. 3, 12–13 (2009).
    [CrossRef]

2012 (1)

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[CrossRef]

2011 (1)

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

2010 (3)

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef] [PubMed]

2009 (4)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon. 3, 12–13 (2009).
[CrossRef]

2008 (5)

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

2007 (4)

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron. E90–C, 87–94 (2007).
[CrossRef]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[CrossRef]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

2006 (1)

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

2005 (2)

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

2004 (3)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

2000 (2)

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

1999 (1)

1997 (1)

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1985 (2)

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Arakawa, E. T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
[CrossRef]

Berolo, E.

Boltasseva, A.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

Bozhelvonyi, S. I.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef] [PubMed]

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon. 3, 12–13 (2009).
[CrossRef]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[CrossRef]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Cao, L.

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon. 3, 12–13 (2009).
[CrossRef]

Charbonneau, R.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
[CrossRef]

Cho, S.-Y.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

Degiron, A.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Dellagiacoma, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dohi, H.

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Fukui, M.

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Goudonnet, J. P.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Harrison, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Inagaki, T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Jetté-Charbonneau, S.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

Jokerst, N. M.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Ju, J. J.

Kim, J. T.

Kim, M.-s.

Kjar, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[CrossRef] [PubMed]

Kuipers, L.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Kurihara, K.

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

Kusunoki, F.

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron. E90–C, 87–94 (2007).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

Larsen, M. S.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

Lee, M.-H.

Leosson, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Lisicka-Shrzek, E.

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Martin, O. J. F.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Mattiussi, G.

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

Morimoto, A.

Motosuga, M.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Nikolajsen, T.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Otomo, A.

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

Park, S.

Park, S. K.

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef] [PubMed]

Smith, D. R.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Tada, O.

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Tago, S.

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Takahara, J.

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron. E90–C, 87–94 (2007).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997).
[CrossRef] [PubMed]

Taki, H.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tian, X.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Wei, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Yamagishi, S.

Yamamoto, K.

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

Yotsuya, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Zia, R.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[CrossRef]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833–5835 (2004).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron. E90–C, 87–94 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys. 103, 113114 (2007).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).

Nano Lett. (4)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8, 3998–4001 (2008).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[CrossRef]

Nat. Photonics (4)

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
[CrossRef]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010).
[CrossRef]

Nature Nanotech. (1)

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech. 2, 426–429 (2007).
[CrossRef]

Nature Photon. (1)

L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon. 3, 12–13 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Photon. News (1)

J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

Phys. Rev. A (1)

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008).
[CrossRef]

Phys. Rev. B (4)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000).
[CrossRef]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74, 165415 (2006).
[CrossRef]

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (2)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef] [PubMed]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[CrossRef]

Science (1)

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef] [PubMed]

Solid State Commun. (1)

H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985).
[CrossRef]

Other (1)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Selective excitation of LRSPs (a) and SRSPs (b) by two incident beams. The excitation of the SPP modes significantly depends on the phase difference between the two beams. Inset: the schematic diagram of the magnetic field distributions Hx of LRSPs (a) and SRSPs (b).

Fig. 2
Fig. 2

The field distributions (Ey) of the SPP modes formed by two incident beams with Δϕ = 0 (a), and Δϕ = π (b) in the FDTD simulation. The PWG structure consists of a thin Ag film (thickness 30 nm, indicated by the white line) embedded in SiO2. The film edge is illuminated by two beams from the upper and lower sides, with polarization of the electric field along the z–axis.

Fig. 3
Fig. 3

(a) Schematic of a symmetrical slab PWG. The Ag slab is 30 nm thick, and is embedded between a SiO2 layer (2 μm thick) and an index-matched polymer layer (10 μm thick). (b) Optical microscope image of the fabricated symmetrical slab PWG.

Fig. 4
Fig. 4

Experimental setup configuration. The laser beam (wavelength 635 nm) is split into two beams (intensity I1, I2) at BS. Then the two beams are focused onto the input edge of the PWG from the upper and lower sides.

Fig. 5
Fig. 5

Scattering intensity from the tip as a function of the phase difference between the two incident beams. The red dots and black dashed-dotted line represent experiments and FDTD simulations, respectively.

Fig. 6
Fig. 6

The selective excitation of LRSPs. (a, b) The experimentally observed scattering from the tip (shown by the dashed circle) for the case of Δϕ = 0 (a) and Δϕ = π (b). (c, d) The field distributions (|E|2, on the Ag surface) of SPP modes excited by two beams with Δϕ = 0 (c) and Δϕ = π (d), in the FDTD simulation. The color scale is the same for both figures.

Fig. 7
Fig. 7

Scattering intensity from the tip as a function of the intensity ratio between the two incident beams, for the phase difference Δϕ = π. The red dots and black dashed-dotted line represent experiments and FDTD simulations, respectively.

Metrics