Abstract

We estimate high optical absorption in silicon thin film photovoltaic devices using triangular corrugations on the back metallic contact. We computationally show 21.9% overall absorptivity in a 100-nm-thick silicon layer, exceeding any reported absorptivity using single layer gratings placed on the top or the bottom, considering both transverse electric and transverse magnetic polarizations and a wide spectral range (280 – 1100 nm). We also show that the overall absorptivity of the proposed scheme is relatively insensitive to light polarization and the angle of incidence. We also discuss the implications of potential fabrication process variations on such a device.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koch, A. L. Endrös, D. Franke, C. Häßler, J. P. Kalejs, and H. J. Möller, “Bulk crystal growth and wafering for PV,” in Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2005), pp. 205–254.
  2. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
    [CrossRef]
  3. C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
    [CrossRef]
  4. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
    [CrossRef]
  5. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef] [PubMed]
  6. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2Suppl 2), A207–A220 (2010).
    [CrossRef] [PubMed]
  7. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
    [CrossRef]
  8. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
    [CrossRef] [PubMed]
  9. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
    [CrossRef] [PubMed]
  10. L. Yifen and K. Jaeyoun, “Grating-induced surface plasmon-polaritons for enhancing photon absorption in organic photovoltaic devices,” in OSA Technical Digest (CD) (Optical Society of America, 2010), CMAA5.
  11. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
    [CrossRef] [PubMed]
  12. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
    [CrossRef]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  14. S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
    [CrossRef]
  15. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
    [CrossRef] [PubMed]
  16. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  17. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
    [CrossRef]
  18. FDTD Solutions, Lumerical Solutions, Inc., Vancouver, British Columbia, Canada.
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
    [CrossRef]
  21. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [CrossRef]
  22. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [CrossRef] [PubMed]

2012 (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

2011 (3)

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express 19(15), 14200–14209 (2011).
[CrossRef] [PubMed]

2010 (5)

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18(S2Suppl 2), A207–A220 (2010).
[CrossRef] [PubMed]

W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (5)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
[CrossRef]

2008 (2)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

2002 (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

1982 (1)

Akimov, Y. A.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Bai, W.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Bartoli, F.

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Chen, L.

Chen, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Demir, H. V.

Duché, D.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Escoubas, L.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Flory, F.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Gan, Q.

Guo, L. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Huang, J.-J.

Kafafi, Z.

Kang, M.-G.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Kiang, Y.-W.

Koh, W. S.

Le Rouzo, J.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Lederer, F.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Li, H. B. T.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Lu, Y.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Luo, X.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
[CrossRef]

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Okyay, A. K.

Ostrikov, K.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Park, H. J.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Reinhardt, K.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Sefunc, M. A.

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
[CrossRef]

Simon, J.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Song, G.

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Torchio, P.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Tsai, F.-J.

Vedraine, S.

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

Wang, J.-Y.

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Wang, W.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

Wu, S.

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

Xu, T.

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Yablonovitch, E.

Yang, C. C.

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.) 21(34), 3504–3509 (2009).
[CrossRef]

M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4378–4383 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95(18), 183503 (2009).
[CrossRef]

C. Rockstuhl and F. Lederer, “Photon management by metallic nanodiscs in thin film solar cells,” Appl. Phys. Lett. 94(21), 213102 (2009).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

J. Appl. Phys. (2)

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109–073, 109–073105 (2009).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys. 104(12), 123102 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 385(1), 113–119 (2002).
[CrossRef]

Nano Lett. (3)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Sol. Energy Mater. Sol. Cells (1)

S. Vedraine, P. Torchio, D. Duché, F. Flory, J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(Supplement 1), S57–S64 (2011).
[CrossRef]

Other (4)

FDTD Solutions, Lumerical Solutions, Inc., Vancouver, British Columbia, Canada.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

W. Koch, A. L. Endrös, D. Franke, C. Häßler, J. P. Kalejs, and H. J. Möller, “Bulk crystal growth and wafering for PV,” in Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, 2005), pp. 205–254.

L. Yifen and K. Jaeyoun, “Grating-induced surface plasmon-polaritons for enhancing photon absorption in organic photovoltaic devices,” in OSA Technical Digest (CD) (Optical Society of America, 2010), CMAA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Proposed structure with top contact (ITO), absorbing layer (Si) and back reflector (Ag) with triangular corrugations, with thicknesses 20 nm, 100 nm, and 80 nm, respectively. (b) Bare structure identical to proposed structure except for the lack of the triangular corrugations. The arrows indicate the direction of illumination.

Fig. 2
Fig. 2

Overall absorptivity (%) as a function of base width (W) of the triangle and period (P) of the corrugations. Period is expressed as multiples of base width (W).

Fig. 3
Fig. 3

Absorptivity enhancement as a function of period (P) and wavelength when W = 135 nm for (a) TM and (b) TE polarizations. (c) Spectral response of optimum structure (W = 135 nm and P = 470 nm).

Fig. 4
Fig. 4

Spectral distribution of absorbed photon count for the optimum and reference structure considering both TM and TE illuminations.

Fig. 5
Fig. 5

E-field profile of the optimum structure at (a) λ = 805 nm (b) λ = 580 nm under TM polarization illumination and (c) at λ = 855 nm and (d) at λ = 550 nm under TE illumination.

Fig. 6
Fig. 6

E-field profile of the structure with 404 nm period at (a) λ = 490 nm (b) λ = 520 nm and optimum structure at (c) at λ = 550 nm under TE polarization illumination.

Fig. 7
Fig. 7

(a) Incidence angle vs overall absorptivity enhancement for the optimum structure (b) Polarization dependence of overall absorptivity of the optimum structure (blue curve) and the reference structure (red curve).

Fig. 8
Fig. 8

(a) Cross section of device with truncated triangular corrugations (b) Overall absorptivity as a function of trapezoid height, optimized for each height.

Fig. 9
Fig. 9

(a) Cross section of device with interfacial SiO2 layer between Si and ITO. (b) Overall absorptivity as a function of SiO2 thickness (c) Spectral absorptivity of device with interfacial SiO2 as a function of oxide thickness.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A=ω×Im(ε) |E | 2 dV
A OVERALL =  280nm 1100nm ( A TM + A TE ) 2 ×AM1.5G(λ)dλ 280nm 1100nm AM1.5G(λ)dλ

Metrics