Abstract

Optical detection in microflow cytometry requires a tightly focused light beam within a microfluidic channel for effective microparticle analysis. Integrated planar lenses have demonstrated this function, but their design is usually derived from the conventional spherical lens. Compact, efficient, integrated planar kinoform microlenses are proposed for use in microflow cytometry. A detailed design procedure is given and several designs are simulated. A paraxial kinoform lens integrated with a microfluidic channel was then fabricated in a silicate glass material system and characterized for focal position and spotsize, in comparison with light emerging directly from a channel waveguide. Focal spotsizes of 5.6 μm for kinoform lenses have been measured at foci as far as 56 μm into the microfluidic channel.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
    [CrossRef]
  2. N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
    [CrossRef] [PubMed]
  3. R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
    [CrossRef] [PubMed]
  4. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
    [CrossRef] [PubMed]
  5. S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
    [CrossRef] [PubMed]
  6. D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
    [CrossRef] [PubMed]
  7. S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
    [CrossRef] [PubMed]
  8. J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem. 398(6), 2373–2382 (2010).
    [CrossRef] [PubMed]
  9. D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
    [CrossRef]
  10. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
    [CrossRef] [PubMed]
  11. Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
    [CrossRef]
  12. K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
    [CrossRef] [PubMed]
  13. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [CrossRef] [PubMed]
  14. S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
    [CrossRef] [PubMed]
  15. J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B 99, 615–622 (2004).
  16. J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
    [CrossRef]
  17. S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
    [CrossRef] [PubMed]
  18. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [CrossRef] [PubMed]
  19. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
    [CrossRef]
  20. H. C. Hunt and J. S. Wilkinson, “Multimode interference devices for focusing in microfluidic channels,” Opt. Lett. 36(16), 3067–3069 (2011).
    [CrossRef] [PubMed]
  21. V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
    [CrossRef]
  22. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28(5), 976–983 (1989).
    [CrossRef] [PubMed]
  23. M. K. McGaugh, C. M. Verber, and R. P. Kenan, “Modified integrated optic Fresnal lens for waveguide-to-fiber coupling,” Appl. Opt. 34(9), 1562–1568 (1995).
    [CrossRef] [PubMed]
  24. H. C. Hunt, “Integrated microlenses and multimode interference devices for microflow cytometers,” PhD Thesis, University of Southampton, UK (2010).
  25. J. Goodman, Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  26. J. E. Harvey, A. Krywonos, and D. Bogunovic, “Nonparaxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A 23(4), 858–865 (2006).
    [CrossRef] [PubMed]
  27. T. Q. Vu, J. A. Norris, and C. S. Tsai, “Formation of negative-index-change waveguide lenses in LiNbO(3) by using ion milling,” Opt. Lett. 13(12), 1141–1143 (1988).
    [CrossRef] [PubMed]
  28. C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
    [CrossRef]
  29. K. E. Spaulding and G. M. Morris, “Achromatic waveguide lenses,” Appl. Opt. 30(18), 2558–2569 (1991).
    [CrossRef] [PubMed]

2011 (2)

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

H. C. Hunt and J. S. Wilkinson, “Multimode interference devices for focusing in microfluidic channels,” Opt. Lett. 36(16), 3067–3069 (2011).
[CrossRef] [PubMed]

2010 (5)

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[CrossRef]

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem. 398(6), 2373–2382 (2010).
[CrossRef] [PubMed]

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

2009 (1)

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

2008 (1)

S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
[CrossRef] [PubMed]

2006 (5)

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
[CrossRef] [PubMed]

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

J. E. Harvey, A. Krywonos, and D. Bogunovic, “Nonparaxial scalar treatment of sinusoidal phase gratings,” J. Opt. Soc. Am. A 23(4), 858–865 (2006).
[CrossRef] [PubMed]

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

2005 (2)

S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef] [PubMed]

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

2004 (3)

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B 99, 615–622 (2004).

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

1997 (1)

V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

1995 (1)

1991 (1)

1989 (1)

1988 (2)

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

T. Q. Vu, J. A. Norris, and C. S. Tsai, “Formation of negative-index-change waveguide lenses in LiNbO(3) by using ion milling,” Opt. Lett. 13(12), 1141–1143 (1988).
[CrossRef] [PubMed]

Anderson, G. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Arnold, J.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Backhouse, C. J.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Barat, D.

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

Benazzi, G.

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

Bogunovic, D.

Buchegger, W.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Buralli, D. A.

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Capjack, C.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Chung, T. D.

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

Di Carlo, D.

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[CrossRef]

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Enger, J.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Erickson, J. S.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Finoulst, I.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Godin, J.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Goksör, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Golden, J. P.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Green, N. G.

D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
[CrossRef] [PubMed]

Hanstorp, D.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Hart, S. J.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Harvey, J. E.

Heikali, D.

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[CrossRef]

Hilliard, L. R.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Holmes, D.

D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
[CrossRef] [PubMed]

Howell, P. B.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Hsiung, S. K.

S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
[CrossRef] [PubMed]

S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef] [PubMed]

Hunt, H. C.

Joo, S.

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

Käll, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Kamiya, T.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Kenan, R. P.

Kim, H. C.

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

Kim, J. S.

J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem. 398(6), 2373–2382 (2010).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Kim, K. H.

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

Kodate, K.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Komai, Y.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Koyama, R.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Krywonos, A.

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Lee, C. H.

S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
[CrossRef] [PubMed]

Lee, G. B.

S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
[CrossRef] [PubMed]

S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef] [PubMed]

Lee, L.

J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B 99, 615–622 (2004).

Leski, T. A.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Lien, V.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Ligler, F. S.

J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem. 398(6), 2373–2382 (2010).
[CrossRef] [PubMed]

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Lin, C. H.

S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef] [PubMed]

Liu, C. G.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Lo, Y.

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Logg, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Manz, A.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

McGaugh, M. K.

Mitchell, P. D.

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Moreno, V.

V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Morgan, H.

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
[CrossRef] [PubMed]

Morris, G. M.

Mowlem, M. C.

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

Nagano, H.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Nasir, M.

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

Norris, J. A.

Okamoto, K.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Oreffo, R. O. C.

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

Pamme, N.

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Pitt, C.

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

Ramser, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Reid, S.

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

Reynolds, S.

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

Rogers, J. R.

Roman, J.

V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Rosenauer, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Rozmus, W.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Ruano, J. M.

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

Salgueiro, J.

V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Seo, J.

J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B 99, 615–622 (2004).

Singh, K.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Skinner, J.

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Spaulding, K. E.

Stroud, R.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Su, X. T.

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Terray, A.

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Thomas, R. S. W.

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

Tsai, C. S.

Vellekoop, M.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Verber, C. M.

Verhaert, P.

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Vu, T. Q.

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Wilkinson, J. S.

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

Am. J. Phys. (1)

V. Moreno, J. Roman, and J. Salgueiro, “High efficiency diffractive lenses: Deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. S. Kim and F. S. Ligler, “Utilization of microparticles in next-generation assays for microflow cytometers,” Anal. Bioanal. Chem. 398(6), 2373–2382 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. J. Hart, A. Terray, T. A. Leski, J. Arnold, and R. Stroud, “Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis,” Anal. Chem. 78(9), 3221–3225 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. Godin, V. Lien, and Y. Lo, “Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers,” Appl. Phys. Lett. 89(6), 061106 (2006).
[CrossRef]

Biomicrofluidics (1)

R. S. W. Thomas, P. D. Mitchell, R. O. C. Oreffo, and H. Morgan, “Trapping single human osteoblast-like cells from a heterogeneous population using a dielectrophoretic microfluidic device,” Biomicrofluidics 4(2), 022806 (2010).
[CrossRef] [PubMed]

Biosens. Bioelectron. (2)

D. Holmes, H. Morgan, and N. G. Green, “High throughput particle analysis: Combining dielectrophoretic particle focussing with confocal optical detection,” Biosens. Bioelectron. 21(8), 1621–1630 (2006).
[CrossRef] [PubMed]

S. Joo, K. H. Kim, H. C. Kim, and T. D. Chung, “A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence,” Biosens. Bioelectron. 25(6), 1509–1515 (2010).
[CrossRef] [PubMed]

Cytometry, Part A (1)

K. Singh, X. T. Su, C. G. Liu, C. Capjack, W. Rozmus, and C. J. Backhouse, “A miniaturized wide-angle 2D cytometer,” Cytometry, Part A 69A (4), 307–315 (2006).
[CrossRef] [PubMed]

Electrophoresis (2)

S. K. Hsiung, C. H. Lee, and G. B. Lee, “Microcapillary electrophoresis chips utilizing controllable micro-lens structures and buried optical fibers for on-line optical detection,” Electrophoresis 29(9), 1866–1873 (2008).
[CrossRef] [PubMed]

S. K. Hsiung, C. H. Lin, and G. B. Lee, “A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection,” Electrophoresis 26(6), 1122–1129 (2005).
[CrossRef] [PubMed]

J. Assoc. Lab. Autom. (1)

D. Heikali and D. Di Carlo, “A niche for microfluidics in portable hematology analyzers,” J. Assoc. Lab. Autom. 15(4), 319–328 (2010).
[CrossRef]

J. Mod. Opt. (1)

C. Pitt, S. Reid, S. Reynolds, and J. Skinner, “Waveguiding Fresnel lenses – modeling and fabrication,” J. Mod. Opt. 35(6), 1079–1111 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43(8B), 5795–5799 (2004).
[CrossRef]

Lab Chip (5)

J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009).
[CrossRef] [PubMed]

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef] [PubMed]

N. Pamme, R. Koyama, and A. Manz, “Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay,” Lab Chip 3(3), 187–192 (2003).
[CrossRef] [PubMed]

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab Chip 5(4), 431–436 (2005).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes,” Microfluid. Nanofluid. 10(4), 761–771 (2011).
[CrossRef]

Opt. Commun. (1)

D. Barat, G. Benazzi, M. C. Mowlem, J. M. Ruano, and H. Morgan, “Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer,” Opt. Commun. 283(9), 1987–1992 (2010).
[CrossRef]

Opt. Lett. (2)

Sens. Actuators B (1)

J. Seo and L. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Actuators B 99, 615–622 (2004).

Other (2)

H. C. Hunt, “Integrated microlenses and multimode interference devices for microflow cytometers,” PhD Thesis, University of Southampton, UK (2010).

J. Goodman, Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of a kinoform in Cartesian coordinates with rays in a zone focusing to a point; nl and ne are the effective indices of the lens and the surrounding medium, respectively.

Fig. 2
Fig. 2

The hyperbola and ellipse curve families and their segmentation into kinoform zones. The schemes used are by McGaugh et al. [23] for hyperbolas (a) and ellipses (c) and the scheme proposed here, with the intersecting line positioned on the vertex for hyperbolas (b) and ellipses (d) giving the familiar zone boundaries in the literature.

Fig. 3
Fig. 3

Comparison of differing profiles of negative lenses designed. The colored areas indicate regions of lower refractive index compared to surroundings.

Fig. 4
Fig. 4

(a) Model lens layout in a slab waveguide and (b) example simulation of an elliptical kinoform lens.

Fig. 5
Fig. 5

Efficiency versus f1 for a two micron input channel waveguide.

Fig. 6
Fig. 6

(a) Simulation layout; efficiency for the (b) paraxial, (c) elliptical, and (d) McGaugh lenses, vs. f1 and f2.

Fig. 7
Fig. 7

(a) Efficiency vs. effective index of the slab region in a paraxial kinoform lens and (b) efficiency vs. microfluidic channel width.

Fig. 8
Fig. 8

Optical microscope image of experimental paraxial kinoform lens.

Fig. 9
Fig. 9

Scattering images of a paraxial kinoform lens stitched together for the (a) TE polarization and (b) TM polarization.

Fig. 10
Fig. 10

Fluorescent images of microfluidic channels for (a) a channel waveguide and (c) a negative elliptical kinoform lens with the Gaussian beam best fits (b) and (d), respectively.

Tables (1)

Tables Icon

Table 1 Gaussian Beam Parameters for Fluorescence Images in the Microfluidic Channel for a Channel Waveguide and Paraxial Kinoform Lens

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

n l z(x)+ n e (d+m λ e )= n e (dz(x)) 2 + x 2 .
{ z(x)( n d r d n 2 1 ) } 2 { nd d r n 2 1 } 2 = x 2 n 2 1 .
( z(x) z 0 ) 2 a 2 x 2 ζ b 2 =1,z(x) z 0 ,
z 0,hyper = d(n1)+nm λ e n 2 1 ,
a hyper = d(n1)m λ e n 2 1 ,
b hyper = d(n1)m λ e n 2 1 ,
z 0,ellip = d(1n)nm λ e 1 n 2 ,
a ellip = d(1n)+m λ e 1 n 2 ,
b ellip = d(1n)+m λ e 1 n 2 .
x m 2 =( n 2 1)( z 0 2 a 2 ),
x m 2 =2m λ e d+ (m λ e ) 2 .
M hyper < d(n1) λ e and M ellip d(1n) n λ e
z(x)= z 0 a 1 x 2 b 2 .
z(x)= z max ( m x 2 2 λ e d ),
z max =ζ λ 0 | n l n e | ,
x m 2 =2m λ e d.
ϕ= 2π λ 0 ( n l n e )z(x).
ϕ=α2π( m x 2 2 λ e d ),
α= z max λ 0 ( n l n e ),
=( n l n e n l n e ) λ 0 λ 0 ,
t(ϕ)=exp(iϕ)= q= c q exp( i πq λ e d x 2 ) .
c q = 1/2 1/2 t(ξ) e i2πqξ dξ= e i2παm π(α+q) sin(π(α+q)).
ς q = c q c q * =sin c 2 (α+q).
η= ( φ(x,0)φ(x,z) dx ) 2 φ 2 (x,0) dx φ 2 (x,z) dx ,

Metrics