Abstract

We demonstrate the excitation of guided modes in thin layers of strongly absorbing chalcogenide glasses. These modes are similar to surface plasmon polaritons in terms of resonance width and shift with changes in the permittivity of the surrounding medium. We exploit these characteristics to demonstrate a high sensitivity chalcogenide glass refractive index sensor that outperforms gold surface plasmon resonance sensors at short wavelengths in the visible. This demonstration opens a new range of possibilities for sensing using different materials.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  2. J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).
    [CrossRef]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef] [PubMed]
  4. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  5. P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B 61, 10484–10503 (2001).
    [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  7. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  8. K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high precision surface plasmon resonance sensors,” Opt. Lett. 15, 75–77 (1990).
    [CrossRef] [PubMed]
  9. G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
    [CrossRef]
  10. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
    [CrossRef]
  11. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
    [CrossRef]
  12. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am. 68, 1325–1332 (1978).
    [CrossRef]
  13. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  14. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
    [CrossRef] [PubMed]
  15. C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
    [CrossRef]
  16. P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).
  17. K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).
  18. L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
    [CrossRef]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
    [CrossRef] [PubMed]
  20. S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).
  21. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
    [CrossRef]
  22. A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B 34, 13–50 (1936).
  23. J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
    [CrossRef]
  24. L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
    [CrossRef] [PubMed]
  25. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett. 34, 749–751(2009).
    [CrossRef] [PubMed]
  26. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
    [CrossRef] [PubMed]
  27. RIU stands for refractive index units. A FoM of 1 RIU−1 means that the resonance shifts 1 degree when the refractive index changes by 1.
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2010 (1)

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
[CrossRef]

2009 (3)

2008 (3)

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
[CrossRef] [PubMed]

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

2007 (2)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

2005 (2)

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

2003 (1)

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

2001 (2)

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B 61, 10484–10503 (2001).
[CrossRef]

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1990 (2)

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high precision surface plasmon resonance sensors,” Opt. Lett. 15, 75–77 (1990).
[CrossRef] [PubMed]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1978 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1936 (1)

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B 34, 13–50 (1936).

Agarwal, A.

Arnold, C.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
[CrossRef]

Baklanov, M. R.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Barnes, W. L.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B 61, 10484–10503 (2001).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Brongersma, S. H.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Carlie, N.

Chang, S. -H.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Forcales, M.

Gent, J.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

Giannini, V.

Gómez Rivas, J.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
[CrossRef] [PubMed]

Homola, J.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).
[CrossRef]

Hooper, I. R.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

Hu, J.

Jha, R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef] [PubMed]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Kawata, S.

Kimerling, L.

Kjaer, K.

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Kovacs, G. J.

Kreuwel, H.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

Kruis, A.

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B 34, 13–50 (1936).

lacopi, F.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Lambeck, P.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

Larsen, M. S.

Leosson, K.

Maex, K.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Matsubara, K.

Minami, S.

Nenningera, G. G.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

Nikolajsen, T.

Okamoto, K.

K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).

Petit, L.

Popma, T.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

Raether, H.

H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

Raoux, S.

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

Richardson, K.

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Shamiryan, D.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Sharma, A. K.

Sherry, L. J.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Smith, L. H.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef] [PubMed]

Tarasov, V.

Taylor, M. C.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

Tobiska, P.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Wuttig, M.

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Yanovitskaya, Z. S.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

Yee, S. S.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

Yeh, P.

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

Zhang, Y.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

App. Opt. (1)

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt. 29, 2843–2849 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett. 96, 113108 (2010).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

J. Appl. Phys. (1)

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys. 93, 8793–8841 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55, 2929–2943 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (2)

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett. 9, 4428–4433 (2009).
[CrossRef] [PubMed]

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B 61, 10484–10503 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Plasmonics (1)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Sens. Act. B (1)

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B 74, 145–151 (2001).
[CrossRef]

Z. Phys. Chem. B (1)

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B 34, 13–50 (1936).

Other (6)

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).

H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).
[CrossRef]

RIU stands for refractive index units. A FoM of 1 RIU−1 means that the resonance shifts 1 degree when the refractive index changes by 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Real component of the wave number βxr, normalized to the wave number in the surrounding medium, n1k0, of guided modes in a thin slab with (a) ε2 = 20 + 1i, (b) ε2 = −20 + 1i and (c) ε2 = 1 + 20i, as a function of the thickness of the layer normalized by the wavelength. The surrounding medium is considered to be vacuum. The dashed line indicates the normalized wave number of the surrounding medium.

Fig. 2
Fig. 2

Real and imaginary components of the permittivity of (a) a-GST and (b) c-GST as a function of wavelength. (c) Scanning electron microscope image of the cross section of a sample.

Fig. 3
Fig. 3

(a) Schematic representation of the long-range mode sensor. A p-polarized plane wave is incident at an angle θ onto the interface separating a high refractive index prism and a layer of nanoporous silica. The evanescently transmitted amplitude can couple to a long-range guided mode by the a-GST layer. (b) Calculation of the magnetic field amplitude for p-polarized light (λ = 530 nm) incident at an angle of 56.6° with respect to the sample normal onto the multilayer shown in Fig. 2(c). The a-GST layer is exposed to water. The incident wave couples to a long-range guided mode on the a-GST layer at this wavelength and angle. The maximum field amplitude is at the interfaces of the a-GST layer. (c) Magnetic field intensity of the long-range mode across the different layers in the multilayer structure. The field intensity decays evanescently from the a-GST interface.

Fig. 4
Fig. 4

(a) Attenuated total reflectance measurements of the multilayer shown in Fig. 2(c) at λ = 530 nm, exposed to various solutions with different refractive indices. A fit to the measurement with a solution of refractive index 1.334 is displayed with the black open circles. (b) Measured (symbols) and calculated (lines) resonance angles (circles) and widths (triangles) as a function of the refractive index of the solution.

Fig. 5
Fig. 5

(a) Calculated intrinsic sensitivity and (b) decay length normalized to the wavelength of long-range guided modes in a layer with a thickness d and at wavelength λ such that d/λ = 0.038, plotted as a function of the real and imaginary components of the permittivity of the thin layer. The surrounding medium has a refractive index of 1.33. The open symbols indicate the permittivity of Au (squares), a-GST (circles) and c-GST (triangles) at different wavelengths equally spaced between 400 (innermost symbols) and 650 nm (outermost symbols). The IS and Lz values indicated by the symbols correspond to layers with a thickness to wavelength ratio d/λ =0.038.

Fig. 6
Fig. 6

(a) Calculated intrinsic sensitivities and (b) decay lengths of long-range guided modes at λ =500 nm in a layer of Au (blue-dashed-dotted curve), c-GST (green-dashed curve) and a-GST (red-solid curve) as a function of the thickness of the layer. (c) Intrinsic sensitivity and (d) decay length ratios between a layer of a-GST or c-GST and Au (solid and dashed curves respectively) at λ = 500 nm as a function of the thickness of the layer. The thin layer is surrounded by a medium with a refractive index of 1.33.

Fig. 7
Fig. 7

(a) Calculated intrinsic sensitivities and (b) decay lengths of long-range guided modes in a layer of Au (blue-dashed-dotted curve), c-GST (green-dashed curve) and a-GST (red-solid curve) with a thickness of 20 nm as a function of the wavelength. (c) Intrinsic sensitivity and (d) decay length ratios between a layer of a-GST or c-GST and Au (solid and dashed curves respectively) as a function of the wavelength. The thin layer is surrounded by a medium with a refractive index of 1.33.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tanh ( i β z 2 d / 2 ) = ε 2 β z 1 ε 1 β z 2 ,
tanh ( i β z 2 d / 2 ) = ε 1 β z 2 β 2 β z 1 ,
I S = δ β x r δ n 1 β x i .
L z = 1 2 Re ( β x 2 k 0 2 n 1 2 ) .

Metrics