Abstract

We demonstrate the excitation of guided modes in thin layers of strongly absorbing chalcogenide glasses. These modes are similar to surface plasmon polaritons in terms of resonance width and shift with changes in the permittivity of the surrounding medium. We exploit these characteristics to demonstrate a high sensitivity chalcogenide glass refractive index sensor that outperforms gold surface plasmon resonance sensors at short wavelengths in the visible. This demonstration opens a new range of possibilities for sensing using different materials.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  2. J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
    [CrossRef] [PubMed]
  4. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
    [CrossRef]
  5. P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B61, 10484–10503 (2001).
    [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23, 413–422 (2005).
    [CrossRef]
  7. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  8. K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high precision surface plasmon resonance sensors,” Opt. Lett.15, 75–77 (1990).
    [CrossRef] [PubMed]
  9. G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
    [CrossRef]
  10. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006).
    [CrossRef]
  11. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
    [CrossRef]
  12. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978).
    [CrossRef]
  13. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
    [CrossRef]
  14. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
    [CrossRef] [PubMed]
  15. C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
    [CrossRef]
  16. P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).
  17. K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).
  18. L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
    [CrossRef]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15, 2307–2314 (2007).
    [CrossRef] [PubMed]
  20. S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).
  21. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
    [CrossRef]
  22. A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B34, 13–50 (1936).
  23. J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
    [CrossRef]
  24. L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
    [CrossRef] [PubMed]
  25. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett.34, 749–751(2009).
    [CrossRef] [PubMed]
  26. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
    [CrossRef] [PubMed]
  27. RIU stands for refractive index units. A FoM of 1 RIU−1 means that the resonance shifts 1 degree when the refractive index changes by 1.
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]

2010

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

2009

2008

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
[CrossRef] [PubMed]

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

2007

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
[CrossRef]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15, 2307–2314 (2007).
[CrossRef] [PubMed]

2006

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006).
[CrossRef]

2005

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23, 413–422 (2005).
[CrossRef]

2003

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

2001

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B61, 10484–10503 (2001).
[CrossRef]

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

1991

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

1990

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high precision surface plasmon resonance sensors,” Opt. Lett.15, 75–77 (1990).
[CrossRef] [PubMed]

1981

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

1978

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

1936

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B34, 13–50 (1936).

Agarwal, A.

Arnold, C.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

Baklanov, M. R.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Barnes, W. L.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B61, 10484–10503 (2001).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Brongersma, S. H.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Carlie, N.

Chang, S. -H.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Chen, S.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Dmitriev, A.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
[CrossRef] [PubMed]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Forcales, M.

Gent, J.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

Giannini, V.

Gómez Rivas, J.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
[CrossRef] [PubMed]

Homola, J.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).

Hooper, I. R.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Hu, J.

Jha, R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Käll, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
[CrossRef] [PubMed]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006).
[CrossRef]

Kawata, S.

Kimerling, L.

Kjaer, K.

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006).
[CrossRef]

Kovacs, G. J.

Kreuwel, H.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

Kruis, A.

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B34, 13–50 (1936).

lacopi, F.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Lambeck, P.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

Larsen, M. S.

Leosson, K.

Maex, K.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Matsubara, K.

Minami, S.

Nenningera, G. G.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

Nikolajsen, T.

Okamoto, K.

K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).

Petit, L.

Popma, T.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

Raether, H.

H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

Raoux, S.

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

Richardson, K.

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Shamiryan, D.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Sharma, A. K.

Sherry, L. J.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Smith, L. H.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Svedendahl, M.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
[CrossRef] [PubMed]

Tarasov, V.

Taylor, M. C.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Tobiska, P.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Wuttig, M.

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Yanovitskaya, Z. S.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

Yee, S. S.

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

Yeh, P.

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

Zhang, Y.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

App. Opt.

J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990).
[CrossRef]

Appl. Phys. Lett.

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006).
[CrossRef]

J. Appl. Phys.

K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

J. Opt. Soc. Am.

Nano Lett.

M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009).
[CrossRef] [PubMed]

L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B61, 10484–10503 (2001).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

Plasmonics

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007).
[CrossRef]

Sens. Act. B

G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001).
[CrossRef]

Z. Phys. Chem. B

A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B34, 13–50 (1936).

Other

S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).

H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006).

RIU stands for refractive index units. A FoM of 1 RIU−1 means that the resonance shifts 1 degree when the refractive index changes by 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics