Abstract

Recently we reported our results on the successful synthesis of 3-D highly ordered macroporous (3DOM) structure of germanium via the template-assisted electrochemical deposition from air- and water stable ionic liquids. Herein we report our new results on the photoluminescence (PL) properties of the obtained ordered macroporous Ge and the Ge/polystyrene composite opal structure. The latter showed a strong green emission compared to a Ge film and a Ge inverse opal. The enhancement of PL intensity was ascribed to the disorder multiple scattering in polystyrene colloidal crystal structure which increased both the excitation light absorption efficiency and the light extraction efficiency. The X-ray photoelectron spectroscopy (XPS) results suggested that the ordered macroporous Ge was capped with an oxide layer including a considerable amount of GeO2. The observed green emission (539 nm) was related to GeO2, likely resulting from the Ge-O bond related intrinsic defects.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(3), 3896–3908 (1998).
    [CrossRef]
  4. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
    [CrossRef] [PubMed]
  5. L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
    [CrossRef]
  6. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
    [CrossRef]
  7. H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
    [CrossRef]
  8. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
    [CrossRef]
  9. X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
    [CrossRef] [PubMed]
  10. R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
    [CrossRef]
  11. N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
    [CrossRef]
  12. R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
    [CrossRef]
  13. F. Endres and S. Z. el Abedin, “Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid,” Chem. Commun. (Camb.)38(8), 892–893 (2002).
    [CrossRef] [PubMed]
  14. J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol.13(3), 1553–1558 (1995).
    [CrossRef]
  15. M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Phys. Rev. B Condens. Matter40(18), 12359–12381 (1989).
    [CrossRef] [PubMed]
  16. Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B Condens. Matter51(3), 1658–1670 (1995).
    [CrossRef] [PubMed]
  17. V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
    [CrossRef]
  18. J. Singh and K. Shimakawa, Advance of Amorphous Semiconductors (CRC Press, 2003).
  19. T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
    [CrossRef]
  20. M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett.71(3), 380–382 (1997).
    [CrossRef]
  21. J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
    [CrossRef]
  22. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
    [CrossRef]
  23. Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
    [CrossRef]
  24. M. Fox, Optical Properties of Solids (Oxford UniversityPress, 2001).
  25. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
    [CrossRef]

2010

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

2009

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

2008

R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
[CrossRef]

V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
[CrossRef]

2005

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

2004

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

2003

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

2002

F. Endres and S. Z. el Abedin, “Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid,” Chem. Commun. (Camb.)38(8), 892–893 (2002).
[CrossRef] [PubMed]

2001

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

2000

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
[CrossRef]

1998

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(3), 3896–3908 (1998).
[CrossRef]

1997

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett.71(3), 380–382 (1997).
[CrossRef]

1995

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol.13(3), 1553–1558 (1995).
[CrossRef]

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B Condens. Matter51(3), 1658–1670 (1995).
[CrossRef] [PubMed]

1989

M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Phys. Rev. B Condens. Matter40(18), 12359–12381 (1989).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Abedin, S. Z. E.

R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
[CrossRef]

Al-Salman, R.

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Anh, N. H. T.

V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
[CrossRef]

Bao, X. M.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Baughman, R. H.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

Biermann, U. W.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

Bissky, G.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

Borissenko, N.

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Busch, K.

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(3), 3896–3908 (1998).
[CrossRef]

Chabanis, G.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

Chomski, E.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Coombs, N.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

Dehesa, J. S.

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

Dong, W.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Driel, H. M. V.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

Duyne, R. P. V.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol.13(3), 1553–1558 (1995).
[CrossRef]

el Abedin, S. Z.

F. Endres and S. Z. el Abedin, “Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid,” Chem. Commun. (Camb.)38(8), 892–893 (2002).
[CrossRef] [PubMed]

Endres, F.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
[CrossRef]

F. Endres and S. Z. el Abedin, “Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid,” Chem. Commun. (Camb.)38(8), 892–893 (2002).
[CrossRef] [PubMed]

Fauchet, P. M.

M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett.71(3), 380–382 (1997).
[CrossRef]

Fu, Z. P.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Fukatsu, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

Galisteo-Lopez, J. F.

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

Gao, T.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Gaponenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

Garci-Santamari, F.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Hoang, V. V.

V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol.13(3), 1553–1558 (1995).
[CrossRef]

Ibisate, M.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Ignat’ev, N. V.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

Jian, Z.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

John, S.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(3), 3896–3908 (1998).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

Komiyama, S.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

Kucheryna, A.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

Kumagai, M.

M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Phys. Rev. B Condens. Matter40(18), 12359–12381 (1989).
[CrossRef] [PubMed]

Kynast, U.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Lezhnina, M. M.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

Li, F.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Li, Y.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Liu, W.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Loez, C.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

Lopez, C.

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Lopez-Tejeira, F.

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

Maeda, Y.

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B Condens. Matter51(3), 1658–1670 (1995).
[CrossRef] [PubMed]

Meng, X. D.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Meseguer, F.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Miguez, H.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Mondia, J. P.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Ozin, G. A.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

Rubio, S.

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

Salman, R. A.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
[CrossRef]

Scott, R. W. J.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

Shiraki, Y.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

Spinu, L.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

Sumioka, K.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
[CrossRef]

Sunamura, H.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

Takagahara, T.

M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Phys. Rev. B Condens. Matter40(18), 12359–12381 (1989).
[CrossRef] [PubMed]

Toader, O.

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Tong, S.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Tsutsui, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
[CrossRef]

Tung, L. D.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

van Driel, H. M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Wang, L. M.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Wiley, J. B.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

Williams, D. E.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

Willner, H.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

Wu, X. L.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Xia, L.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Xu, L. B.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamasaki, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
[CrossRef]

Yan, H.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Yang, B. F.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Yang, S. M.

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

Yang, Y. L.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Zacharias, M.

M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett.71(3), 380–382 (1997).
[CrossRef]

Zakhidov, A. A.

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

Zhao, J.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Zhen, W.

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

Zheng, X. Q.

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

Zung, H.

V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

L. B. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, “Synthesis and magnetic behavior of nickel sphere arrays,” Adv. Mater. (Deerfield Beach Fla.)15(18), 1562–1564 (2003).
[CrossRef]

R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams, and G. A. Ozin, “Tin dioxide opals and inverted opals: near-ideal microstructures torgas sensors,” Adv. Mater. (Deerfield Beach Fla.)13(19), 1468–1472 (2001).
[CrossRef]

H. Miguez, E. Chomski, F. Garci-Santamari, M. Ibisate, S. John, C. Loez, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Photonic bandgap engineering in germanium inverse opals by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)13(21), 1634–1637 (2001).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

X. D. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li, and F. Endres, “Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant,” Angew. Chem. Int. Ed. Engl.48(15), 2703–2707 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71(2), 258–260 (1997).
[CrossRef]

T. Gao, S. Tong, X. Q. Zheng, X. L. Wu, L. M. Wang, and X. M. Bao, “Strong visible photoluminescence from Ge/porous Si structure,” Appl. Phys. Lett.72(25), 3312–3313 (1998).
[CrossRef]

M. Zacharias and P. M. Fauchet, “Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects,” Appl. Phys. Lett.71(3), 380–382 (1997).
[CrossRef]

J. F. Galisteo-Lopez, F. Lopez-Tejeira, S. Rubio, C. Lopez, and J. S. Dehesa, “Experimental evidence of polarization dependence in the optical response of opal-based photonic crystals,” Appl. Phys. Lett.82(23), 4068–4070 (2003).
[CrossRef]

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Organic light-emitting device with an ordered monolayer of silica microspheres as a scattering medium,” Appl. Phys. Lett.76(10), 1243–1245 (2000).
[CrossRef]

Chem. Commun. (Camb.)

F. Endres and S. Z. el Abedin, “Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid,” Chem. Commun. (Camb.)38(8), 892–893 (2002).
[CrossRef] [PubMed]

J. Fluor. Chem.

N. V. Ignat’ev, U. W. Biermann, A. Kucheryna, G. Bissky, and H. Willner, “New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions,” J. Fluor. Chem.126(8), 1150–1159 (2005).
[CrossRef]

J. Phys. Condens. Matter

Y. L. Yang, B. F. Yang, Z. P. Fu, H. Yan, W. Zhen, W. Dong, L. Xia, W. Liu, Z. Jian, and F. Li, “Enhanced yellow–green photoluminescence from ZnO–SiO2 composite opal,” J. Phys. Condens. Matter16(41), 7277–7286 (2004).
[CrossRef]

J. Vac. Sci. Technol.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol.13(3), 1553–1558 (1995).
[CrossRef]

Nature

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature405(6785), 437–440 (2000).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

R. A. Salman, S. Z. E. Abedin, and F. Endres, “Electrodeposition of Ge, Si and SixGe1-x from an air- and water-stable ionic liquid,” Phys. Chem. Chem. Phys.10(31), 4650–4657 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Phys. Rev. B Condens. Matter40(18), 12359–12381 (1989).
[CrossRef] [PubMed]

Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B Condens. Matter51(3), 1658–1670 (1995).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(3), 3896–3908 (1998).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett.81(1), 77–80 (1998).
[CrossRef]

Phys. Status Solidi

V. V. Hoang, N. H. T. Anh, and H. Zung, “Structural properties of simulated amorphous GeO2 nanoparticles,” Phys. Status Solidi245(8), 1505–1511 (2008) (b).
[CrossRef]

Pure Appl. Chem.

R. A. Salman, X. D. Meng, J. Zhao, Y. Li, U. Kynast, M. M. Lezhnina, and F. Endres, “Semiconductor nanostructures via electrodeposition from ionic liquids,” Pure Appl. Chem.82(8), 1673–1689 (2010).
[CrossRef]

Other

J. Singh and K. Shimakawa, Advance of Amorphous Semiconductors (CRC Press, 2003).

M. Fox, Optical Properties of Solids (Oxford UniversityPress, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CV of pure [HMIm]FAP on the ITO surface showing the electrochemical window of the ionic liquid. The scan rate is 10mVs−1, at 25 °C.

Fig. 2
Fig. 2

CV of 0.1M GeCl4 in [HMIm]FAP acquired at a scan rate of 10 mVs−1 on ITO covered with a polystyrene colloidal crystal template at 25 °C.

Fig. 4
Fig. 4

The Ge 3d decomposed XPS spectra of the Ge PCs surface. (a) no Ar+ ion sputtering (b) after 2 min Ar+ ion sputtering

Fig. 3
Fig. 3

(a) FESEM images of the surface of PS colloidal crystal template. The scale bar is 1µm; (b) A cross-section of Ge PCs before dissolution of the PS spheres. Arrows indicate the Ge nanocrystals grown in opal voids. The scale bar is 5 µm; (c) Ge PCs after removing the PS matrix obtained after applying a constant potential of −1.6 V vs. Ag for 1 h at room temperature.The scale bar is:1µm; (d) A high-resolution FESEM image of the Ge PC shown in (c).

Fig. 5
Fig. 5

The room temperature PL spectra of the Ge films (electrochemically prepared) and Ge PCs at an excitation power of 30 mW

Fig. 6
Fig. 6

(a) The TEM image of Ge PCs.The scale bar is: 400 nm; (b) The HRTEM image of the border of Ge PCs.The scale bar is: 4 nm.

Fig. 7
Fig. 7

(a) PL spectra of Ge PCs and Ge infilled PS composite; (b) Normalized PL spectra of Ge PCs and Ge-PS composite at an excitation power of 9 mW. The PL spectra are normalized at the peak intensity of the green emission band.

Metrics