Abstract

A widebandwidth optical delay line is a useful device for various fascinating applications, such as optical buffering and processing of ultrafast signal. Here, we experimentally demonstrated effective slow light of sub-picosecond signal over 10 THz frequency range by employing the wide slow light modes in thick symmetrical metal-cladding optical waveguide (SMCOW). Ultrahigh-order guided modes travelling as slow light in waveguide together with strong confinement provided by metal-cladding makes this scheme nearly material dispersion independent and compatible with wide bandwidth operation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  2. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413, 273–276 (2001).
    [CrossRef] [PubMed]
  3. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
    [CrossRef] [PubMed]
  4. L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
    [CrossRef]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
    [CrossRef] [PubMed]
  6. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
    [CrossRef] [PubMed]
  7. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express16, 9245–9253 (2008).
    [CrossRef] [PubMed]
  8. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
    [CrossRef]
  9. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
    [CrossRef]
  10. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640gb/s using slow-light,” Opt. Express18, 7770–7781 (2010).
    [CrossRef] [PubMed]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
    [CrossRef]
  12. M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
    [CrossRef]
  13. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
    [CrossRef]
  14. W. Yuan, C. Yin, H. Li, P. Xiao, and Z. Cao, “Wideband slow light assisted by ultrahigh-order modes,” J. Opt. Soc. Am. B28, 968–971 (2011).
    [CrossRef]
  15. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
    [CrossRef]

2011

2010

2008

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express16, 9245–9253 (2008).
[CrossRef] [PubMed]

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

2007

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
[CrossRef]

2006

M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
[CrossRef]

2005

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

2004

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

2003

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

2001

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413, 273–276 (2001).
[CrossRef] [PubMed]

1991

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Adachi, J.

Andre, A.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

Baba, T.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Cao, Z.

W. Yuan, C. Yin, H. Li, P. Xiao, and Z. Cao, “Wideband slow light assisted by ultrahigh-order modes,” J. Opt. Soc. Am. B28, 968–971 (2011).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

Corcoran, B.

Eggleton, B. J.

Eisaman, M. D.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

Fengnian Xia, M. O.

M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
[CrossRef]

Fleischhauer, M.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Grillet, C.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413, 273–276 (2001).
[CrossRef] [PubMed]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Kawaaski, T.

Krauss, T. F.

Li, H.

W. Yuan, C. Yin, H. Li, P. Xiao, and Z. Cao, “Wideband slow light assisted by ultrahigh-order modes,” J. Opt. Soc. Am. B28, 968–971 (2011).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

Lukin, M. D.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413, 273–276 (2001).
[CrossRef] [PubMed]

Massou, F.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Monat, C.

Mori, D.

Moss, D. J.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Pelusi, M.

Sasaki, H.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
[CrossRef]

Sekaric, Lidija

M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Shen, Q.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

Thevenaz, L.

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
[CrossRef]

M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

White, T. P.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
[CrossRef]

Xiao, P.

Yin, C.

Yuan, W.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Zibrov, A. S.

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. O. Fengnian Xia, Lidija Sekaric, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett.89, 041122 (2006).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85, 4579–4581 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83, 2757 –2759 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D40, 2666–2670 (2007).
[CrossRef]

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1, 65–71 (2007).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008).
[CrossRef]

L. Thevenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008).
[CrossRef]

Nature

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature413, 273–276 (2001).
[CrossRef] [PubMed]

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature438, 837–841 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438, 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the SMCOW and light coupling method in the experiment. (Inset pic.) The reflected beam (left) and transmitted slow light (right) received on a screen.

Fig. 2
Fig. 2

(a) Simulation of attenuated total reflection (ATR) spectrum and efficient index of the SMCOW using experimental parameters. The wavelength of incident light is set to the central wavelength of the incident light (805 nm). Each dip in the ATR spectrum corresponds to the coupling of light into SMCOW. The black squares is the corresponding effective index of the ultrahigh order mode excited. (b) Schematic diagram of dispersion relation and group-index characteristics for ultrahigh-order modes. Slow light occurs when propagation constant or effective index is small.

Fig. 3
Fig. 3

(a) The loss versus waveguide thickness at the incident angle of 3.6°. The propagation loss is moderate small for sub-mm or mm scale SMCOW. (b) The loss versus incident angle at the thickness of 2 mm. The loss is nearly the same for both TE and TM ultrahigh-order modes.

Fig. 4
Fig. 4

(a) Measured absolute time delay and pulse expansion at different coupling angles. Self-correlation width of the incident pulse is 1.11ps (785 fs for Gaussian, or 720 fs for Sech2 pulse profile). The solid curve is the theoretical fitting. (Inset) A typical input and output spectra. (b) Self-correlation trace of the optical pulse at each time delay denoted by the yellow filled circles plotted in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k 0 h n 2 n eff 2 = m π ,
v g = c n g = n eff n c n + ω d n / d ω ,
β 2 ' = n c 2 ( n c 2 n eff 2 ) ω c c n eff 3 ,
Δ ω = π c h ( n 2 n eff 2 ) 1 / 2 ,

Metrics