Abstract

We suggest and demonstrate numerically that, by employing tapered waveguides in the geometry of a directional coupler, we can enhance dramatically the performance for optical switching of nonlinear plasmonic couplers operating at the nanoscale, overcoming the detrimental losses but preserving the subwavelength confinement. We demonstrate that, by an appropriate choice of the taper angle of the coupled metal-dielectric slot waveguides, we can compensate for the amplitude decrease and enhance the sharpness of the response for the switching operation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Brongersma and P. G. Krik, Eds. Surface Plasmon Nanophotonics (Springer, 2007), p. 268
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219
  3. D. K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  4. N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
    [CrossRef]
  5. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
    [CrossRef]
  6. J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
    [CrossRef] [PubMed]
  7. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16, 20142–20148 (2008).
    [CrossRef] [PubMed]
  8. D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
    [CrossRef]
  9. Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
    [CrossRef]
  10. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
    [CrossRef]
  11. A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
    [CrossRef]
  12. V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).
  13. G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
    [CrossRef]
  14. D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
    [CrossRef] [PubMed]
  15. A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16, 21209–21214 (2008).
    [CrossRef] [PubMed]
  16. J. R. Salgueiro and Yu. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
    [CrossRef]
  17. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
    [CrossRef] [PubMed]
  18. A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
    [CrossRef]
  19. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
    [CrossRef] [PubMed]
  20. E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).
    [CrossRef]
  21. S. A. Cummer, “An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,” IEEE Trans. Antennas Propagat. 45, 392–400 (1997).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  23. R. M. Joseph and T. Allen, “Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modelling,” IEEE Photon. Technol. Lett. 6, 1251–1254 (1994).
    [CrossRef]

2010

D. K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

J. R. Salgueiro and Yu. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35, 541–543 (2010).
[CrossRef] [PubMed]

2009

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[CrossRef]

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

2008

2006

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

2004

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

1997

S. A. Cummer, “An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,” IEEE Trans. Antennas Propagat. 45, 392–400 (1997).
[CrossRef]

1994

R. M. Joseph and T. Allen, “Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modelling,” IEEE Photon. Technol. Lett. 6, 1251–1254 (1994).
[CrossRef]

1987

1986

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).
[CrossRef]

1985

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

1980

V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Abushagur, M. A. G.

Agranovich, V. M.

V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).

Allen, T.

R. M. Joseph and T. Allen, “Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modelling,” IEEE Photon. Technol. Lett. 6, 1251–1254 (1994).
[CrossRef]

Ariyasu, J.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Babichenko, V. S.

V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).

Boardman, A. D.

Bozhevolnyi, S. I.

Bozhevolnyi, S.I.

D. K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Chen, Z.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[CrossRef]

Chernyak, V. Y.

V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).

Cho, S. Y.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cummer, S. A.

S. A. Cummer, “An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,” IEEE Trans. Antennas Propagat. 45, 392–400 (1997).
[CrossRef]

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16, 21209–21214 (2008).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Dereux, A.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[CrossRef]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Gramotnev, D. K.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[CrossRef]

Holmgaard, T.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jokerst, N. M.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Joseph, R. M.

R. M. Joseph and T. Allen, “Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modelling,” IEEE Photon. Technol. Lett. 6, 1251–1254 (1994).
[CrossRef]

Kivshar, Yu. S.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

J. R. Salgueiro and Yu. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16, 21209–21214 (2008).
[CrossRef] [PubMed]

Krasavin, A. V.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Lu, Z.

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Maradudin, A. A.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Marcatili, E.

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).
[CrossRef]

Markey, L.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
[CrossRef]

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

Mihalache, D.

Nerkararyan, K. V.

Osgood, R. M.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

Panoiu, N. C.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

Pile, D. F. P.

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[CrossRef]

Salgueiro, J. R.

J. R. Salgueiro and Yu. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

Sandke, M.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Seaton, C. T.

D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
[CrossRef] [PubMed]

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Shadrivov, I. V.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16, 21209–21214 (2008).
[CrossRef] [PubMed]

Smith, D. R.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Stegeman, G. I.

D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987).
[CrossRef] [PubMed]

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Twardowski, T.

Tyler, T.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Vernon, K. C.

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[CrossRef]

Wallis, R. F.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

Wright, E. M.

Yang, R.

Zanoni, R.

Zayats, A. V.

Z. Chen, T. Holmgaard, S. I. Bozhevolnyi, A. V. Krasavin, A. V. Zayats, L. Markey, and A. Dereux, “Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides,” Opt. Lett. 34, 810–812 (2009).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Zharov, A. A.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

Appl. Phys. B

D. K. Gramotnev, K. C. Vernon, and D. F. P. Pile, “Directional coupler using gap plasmon waveguides,” Appl. Phys. B 93, 99–106 (2008).
[CrossRef]

Appl. Phys. Lett.

J. R. Salgueiro and Yu. S. Kivshar, “Nonlinear plasmonic directional couplers,” Appl. Phys. Lett. 97, 081106 (2010).
[CrossRef]

IEEE J. Quantum Electron.

E. Marcatili, “Improved coupled-mode equations for dielectric guides,” IEEE J. Quantum Electron. 22, 988–993 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

R. M. Joseph and T. Allen, “Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modelling,” IEEE Photon. Technol. Lett. 6, 1251–1254 (1994).
[CrossRef]

IEEE Trans. Antennas Propagat.

S. A. Cummer, “An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy,” IEEE Trans. Antennas Propagat. 45, 392–400 (1997).
[CrossRef]

J. Appl. Phys.

G. I. Stegeman, C. T. Seaton, J. Ariyasu, R. F. Wallis, and A. A. Maradudin, “Nonlinear electromagnetic waves guided by a single interface,” J. Appl. Phys. 58, 2453–2459 (1985).
[CrossRef]

J. Lightwave Technol.

Nano Lett.

N. C. Panoiu and R. M. Osgood, “Subwavelength nonlinear plasmonic nanowire,” Nano Lett. 4, 2427–2430 (2004).
[CrossRef]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett. 6, 1027–1030 (2006).
[CrossRef]

Nat. Photonics

D. K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

New J. Phys.

A. Degiron, S. Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Yu. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).
[CrossRef] [PubMed]

J. A. H. van Nieuwstadt, M. Sandke, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi RRL

A. R. Davoyan, I. V. Shadrivov, Yu. S. Kivshar, and D. K. Gramotnev, “Optimal tapers for compensating losses in plasmonic waveguides,” Phys. Status Solidi RRL 4, 277–279 (2010).
[CrossRef]

Sov. Phys. JETP

V. M. Agranovich, V. S. Babichenko, and V. Y. Chernyak, “Nonlinear surface polaritons,” Sov. Phys. JETP 32, 512–515 (1980).

Other

M. I. Brongersma and P. G. Krik, Eds. Surface Plasmon Nanophotonics (Springer, 2007), p. 268

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 219

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tapered plasmonic waveguide coupler. (a) Sketch of the coupled tapered metal-dielectric-metal slot waveguides. (b) View of the XZ-plane showing the different domains used in numerical FDTD simulations of the plasmonic coupler. Notations are: PML, perfectly marched layer; TF/SF, total field-scattered field technique.

Fig. 2
Fig. 2

Numerical experiments for a linear regime and different taper angles. (a–b) Irradiance at each of the cores of the coupler for a non-tapered coupler and for a loss compensating angle α = 1.9 deg. respectively. (c) Coupled power into the second waveguide versus propagation distance for different taper angles. (d) Irradiance at each waveguide core versus propagation distance.

Fig. 3
Fig. 3

Different images showing the evolution of the electromagnetic field (magnetic component) for tapered waveguides at an angle α = 1.9 deg. (a) corresponds to the linear case, (b) to an intermediate power regime and (c) corresponds to a nonlinear regime.

Fig. 4
Fig. 4

Switching curve for different taper angles. Mean irradiance inside the excited core after a beat length normalized to the mean input irradiance vs. the mean input irradiance.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ( r ) = { ε m ; for metallic claddings , ε d + | E x | 2 + | E z | 2 ; for nonlinear   cores ,
2 i σ A 1 z + i ( σ z + Γ ) A 1 + N | A 1 | 2 A 1 + K A 2 = 0 ,
2 i σ A 2 z + i ( σ z + Γ ) A 2 + N | A n | 2 A 2 + K A 1 = 0 ,

Metrics