Abstract

We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of −2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
    [CrossRef]
  3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  5. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt. 46(21), 4680–4685 (2007).
    [CrossRef] [PubMed]
  6. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008).
    [CrossRef] [PubMed]
  7. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express 18(24), 24722–24728 (2010).
    [CrossRef] [PubMed]
  8. S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Efficient generation and control of different-order orbital angular momentum states for communication links,” J. Opt. Soc. Am. A 28(1), 61–65 (2011).
    [CrossRef] [PubMed]
  9. P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
    [CrossRef]
  10. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
    [CrossRef]
  11. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
  12. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
    [CrossRef]
  13. C. R. Doerr and L. L. Buhl, “Circular grating coupler for creating focused azimuthally and radially polarized beams,” Opt. Lett. 36(7), 1209–1211 (2011).
    [CrossRef] [PubMed]
  14. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  15. C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in European Conference on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.A.3.
  16. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
    [CrossRef]
  17. T. Mizuochi, “Forward error correction,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), 303–333.

2011 (4)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Efficient generation and control of different-order orbital angular momentum states for communication links,” J. Opt. Soc. Am. A 28(1), 61–65 (2011).
[CrossRef] [PubMed]

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

C. R. Doerr and L. L. Buhl, “Circular grating coupler for creating focused azimuthally and radially polarized beams,” Opt. Lett. 36(7), 1209–1211 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[CrossRef]

2008 (2)

2007 (2)

2004 (1)

1997 (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Anguita, J. A.

Arabaci, M.

Barnett, S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Boffi, P.

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

Bouchal, Z.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Buhl, L. L.

Burge, R. E.

Celechovský, R.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Courtial, J.

Djordjevic, I. B.

Doerr, C. R.

Franke-Arnold, S.

Gatto, A.

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

Gibson, G.

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

Karimi, E.

Li, G.

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[CrossRef]

Lin, J.

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

Marrucci, L.

Martelli, P.

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

Martinelli, M.

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

Neifeld, M. A.

Padgett, M.

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

Pas’ko, V.

Piccirillo, B.

Santamato, E.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Slussarenko, S.

Soskin, M. S.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Tao, S. H.

Vasic, B. V.

Vasnetsov, M.

Vasnetsov, M. V.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

Yuan, X. C.

Adv. Opt. Photonics (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[CrossRef]

G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics 1(2), 279–307 (2009).
[CrossRef]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).

Electron. Lett. (1)

P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett. 47(17), 972–973 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2(4), 299–313 (2008).
[CrossRef]

New J. Phys. (1)

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9(9), 328 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56(5), 4064–4075 (1997).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Other (3)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in European Conference on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.A.3.

T. Mizuochi, “Forward error correction,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), 303–333.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Visualization of the electric field of OAM beams. (b) Illustration showing how a beam encoded with an OAM state is sampled and demultiplexed by a circular arrangement of apertures, length-matched waveguides and a star coupler.

Fig. 2
Fig. 2

(a) Waveguide layout of silicon OAM device for multiplexing five OAM modes ( ℓ = +2, +1,0,−1,−2). (b) Fabricated silicon OAM device. Inset shows SEM photo of grating.

Fig. 3
Fig. 3

Intensity of near-field output from the OAM device (input port 0) from (a) a simulation and (b) measurement. Intensity of far-field output from OAM device for ℓ = 0 for (c) a simulation, (d) measured without phase-error correction (PEC), and (e) with PEC.

Fig. 4
Fig. 4

(a) Experimental arrangement using two silicon PICs to achieve OAM multiplexing and demultiplexing for up to two simultaneous channels.(b) Photo of OAM PICs and optics.

Fig. 5
Fig. 5

(a) Single-channel BER performance of the OAM mux/demux 10 Gb/s for BPSK and 20 Gb/s for QPSK. The legend lists the device input port number (i.e., ℓ). (b) BER performance for the ℓ = −2 and ℓ = +1 channel without, and with, an interferer with 10 Gb/s BPSK data.

Metrics