Abstract

We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object’s sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2003).
  2. U. Schnars and W. P. O. Jüpter, Digital Holography (Springer-Verlag, Heidelberg, 2005).
  3. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
  5. T. Huang, “Digital holography,” Proc. IEEE59(9), 1335–1346 (1971).
  6. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett.26(20), 1550–1552 (2001).
  7. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett.27(24), 2179–2181 (2002).
  8. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett.32(7), 733–735 (2007).
  9. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt.47(30), 5654–5659 (2008).
  10. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt.11(12), 125408 (2009).
  11. B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express18(2), 962–972 (2010).
  12. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett.33(20), 2356–2358 (2008).
  13. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express17(7), 5473–5480 (2009).
  14. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt.49(5), 845–857 (2010).
  15. V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt.15(4), 046027 (2010).
  16. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett.36(7), 1149–1151 (2011).
  17. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express15(11), 6651–6663 (2007).
  18. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).
  19. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).
  20. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett.36(2), 148–150 (2011).
  21. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett.36(6), 885–887 (2011).
  22. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).
  23. M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).
  24. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008).
  25. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express17(17), 15008–15022 (2009).
  26. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett.34(23), 3650–3652 (2009).
  27. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt.41(23), 4775–4782 (2002).
  28. Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).
  29. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett.30(24), 3350–3352 (2005).
  30. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express13(16), 6073–6078 (2005).
  31. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt.45(34), 8596–8605 (2006).
  32. A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett.34(10), 1522–1524 (2009).
  33. P. F. Almoro and S. G. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express16(11), 7608–7618 (2008).
  34. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999).
  35. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A24(6), 1617–1622 (2007).
  36. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt.47(19), D38–D43 (2008).
  37. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett.8(7), 653–655 (2010).
  38. F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express19(5), 3862–3869 (2011).
  39. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
  40. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  41. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).
  42. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14(10), 4300–4306 (2006).

2011

2010

2009

2008

2007

2006

2005

2002

2001

1999

1971

T. Huang, “Digital holography,” Proc. IEEE59(9), 1335–1346 (1971).

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).

Alexandrov, S. A.

Almoro, P.

Almoro, P. F.

Anand, A.

Aspert, N.

Badizadegan, K.

Binet, R.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Brueck, S. R.

Calabuig, A.

Castro, A.

Charrière, F.

Chhaniwal, V. K.

Choi, W.

Choi, Y.

Colineau, J.

Collot, L.

Colomb, T.

Dasari, R.

Dasari, R. R.

De Nicola, S.

Depeursinge, C.

Di, J.

Dubois, F.

Fan, Q.

Fang-Yen, C.

Feld, M. S.

Feng, P.

Ferraro, P.

Ferreira, C.

Finizio, A.

Fixler, D.

Frauel, Y.

Garcia, J.

García, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).

Granero, L.

Grilli, S.

Gross, M.

Gutzler, T.

Hanson, S. G.

Hennelly, B. M.

Hezaveh, M. S.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).

Hillman, T. R.

Huang, T.

T. Huang, “Digital holography,” Proc. IEEE59(9), 1335–1346 (1971).

Javidi, B.

Jiang, H.

Joannes, L.

Katz, B.

Kim, M.

Kühn, J.

Kuznetsova, Y.

Latifi, H.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).

Le Clerc, F.

Legros, J.-C.

Lehureau, J.-C.

Li, R.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Liu, H.

Liu, S.

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Lu, R.

Lu, X.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Luo, Y.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Marquet, P.

Massig, J. H.

Massudi, R.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).

Maycock, J.

McDonald, J. B.

Merola, F.

Mertz, J.

Micó, V.

Naughton, T. J.

Neumann, A.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Osten, W.

Pan, F.

Park, Y. K.

Paturzo, M.

Pedrini, G.

Riahi, M. R.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).

Rong, L.

Rosen, J.

Sampson, D. D.

She, C.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Sun, W.

Sung, Y.

Ventalon, C.

Wang, F. J.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Wen, X.

Xiao, W.

Yaqoob, Z.

Yuan, C.

Zalevsky, Z.

Zhai, H.

Zhang, P.

Zhang, Y.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Zhao, J.

Zhong, L.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett.81(17), 3143–3145 (2002).

Chin. Opt. Lett.

Int. J. Imaging Syst. Technol.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol.16(6), 258–261 (2006).

J. Biomed. Opt.

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt.15(4), 046027 (2010).

J. Opt. A, Pure Appl. Opt.

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A, Pure Appl. Opt.11(12), 125408 (2009).

J. Opt. Soc. Am. A

Opt. Express

Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy-approaching the linear systems limits of optical resolution,” Opt. Express15(11), 6651–6663 (2007).

P. F. Almoro and S. G. Hanson, “Wavefront sensing using speckles with fringe compensation,” Opt. Express16(11), 7608–7618 (2008).

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express16(21), 17107–17118 (2008).

Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express17(17), 15008–15022 (2009).

V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express16(23), 19260–19270 (2008).

P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express17(7), 5473–5480 (2009).

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express17(10), 7873–7892 (2009).

T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express14(10), 4300–4306 (2006).

J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express13(16), 6073–6078 (2005).

F. Pan, W. Xiao, S. Liu, F. J. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express19(5), 3862–3869 (2011).

B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express18(2), 962–972 (2010).

Opt. Lett.

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett.36(6), 885–887 (2011).

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett.36(7), 1149–1151 (2011).

C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett.30(24), 3350–3352 (2005).

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett.27(24), 2179–2181 (2002).

F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett.26(20), 1550–1552 (2001).

A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett.34(10), 1522–1524 (2009).

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett.34(23), 3650–3652 (2009).

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett.36(2), 148–150 (2011).

C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett.33(20), 2356–2358 (2008).

P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett.32(7), 733–735 (2007).

Proc. IEEE

T. Huang, “Digital holography,” Proc. IEEE59(9), 1335–1346 (1971).

Proc. SPIE

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE5636, 581–588 (2005).

Other

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2003).

U. Schnars and W. P. O. Jüpter, Digital Holography (Springer-Verlag, Heidelberg, 2005).

J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).

Supplementary Material (3)

» Media 1: MOV (179 KB)     
» Media 2: MOV (3036 KB)     
» Media 3: MOV (1907 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Upper view of the proposed LOSH layout: (a) ray tracing for imaging and reference beams, and (b) identification of the main parameters for the mathematical analysis.

Fig. 2
Fig. 2

Experimental setup for LOSH approach (Media 1).

Fig. 3
Fig. 3

Full LOSH process yielding in the generation of an extended FOV (Media 2).

Fig. 4
Fig. 4

FOV extension by LOSH. (a) Conventional FOV recovered when considering a single digital lensless Fourier hologram. And (b) extended FOV image after applying LOSH.

Fig. 5
Fig. 5

Resolution improvement by LOSH. (a) Low resolution image. (b) Superresolved image after applying LOSH. (c) Magnification of the black rectangle depicted in (b). And (c) horizontal plots of the elements marked with the red and blue lines in (c).

Fig. 6
Fig. 6

(a) Square aperture representing the proposed system layout at the Fourier domain. And (b) SA generated after applying LOSH.

Fig. 7
Fig. 7

DOF extension by LOSH. (a)-(b) Conventional low resolution image being the resolution test and the horizontal slide scale in focus, respectively. (c)-(d) Synthesized image after applying LOSH showing the resolution test and the horizontal slide scale, respectively. (e) Single frame of the video movie showing digital refocusing ability (Media 3). And (f) synthesized expanded DOF image after applying LOSH.

Tables (1)

Tables Icon

Table 1 SNR Analysis

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

U ( x 1 , y 1 ) = exp [ j k 2 D ( x 1 2 + y 1 2 ) ] O ( x 1 , y 1 ) .
U ( x 2 , y 2 ) = 1 j λ D exp [ j k 2 D ( x 2 2 + y 2 2 ) ] U ( x 1 , y 1 ) exp [ j k 2 D ( x 1 2 + y 1 2 ) ] exp [ j 2 π λ D ( x 1 x 2 + y 1 y 2 ) ] d x 1 d y 1 = C exp [ j k 2 D ( x 2 2 + y 2 2 ) ] F ˜ ( u , v )
F ˜ ( u , v ) = U ( x 1 , y 1 ) exp [ j k 2 D ( x 1 2 + y 1 2 ) ] exp [ j 2 π ( u x 1 + v y 1 ) ] d x 1 d y 1 = F T { U ( x 1 , y 1 ) exp [ j k 2 D ( x 1 2 + y 1 2 ) ] }
R ( x 2 , y 2 ) = R 0 exp [ j k 2 D ( x 2 2 + y 2 2 ) ] exp ( j 2 π b y 2 λ D ) .
U ( x 2 , y 2 ) R ( x 2 , y 2 ) = R 0 C exp ( j 2 π b v ) F ˜ ( u , v ) U ( x 2 , y 2 ) R ( x 2 , y 2 ) = R 0 C exp ( j 2 π b v ) F ˜ ( u , v )
F ˜ ( u , v ) = F T { U ( x 1 , y 1 ) exp [ j k 2 D ( x 1 2 + y 1 2 ) ] } = F T { O ( x 1 , y 1 ) exp [ j k D ( x 1 2 + y 1 2 ) ] } F ˜ ( u , v ) = F T { U ( x 1 , y 1 ) exp [ j k 2 D ( x 1 2 + y 1 2 ) ] } = F T { O ( x 1 , y 1 ) exp [ j k D ( x 1 2 + y 1 2 ) ] } .
O [ α x 3 , α y 3 b ] exp { j 2 π λ D [ ( α x 3 ) 2 + ( α y 3 b ) 2 ] } O [ α x 3 , ( α y 3 + b ) ] exp { j 2 π λ D [ ( α x 3 ) 2 + ( α y 3 + b ) 2 ] }
f x = x o λ D and f y = y o b λ D .
[ f x 1 , f x 2 ] = [ L 2 λ D , L 2 λ D ] and [ f y 1 , f y 2 ] = [ L 2 b λ D , L 2 b λ D ] .
L 2 b M λ D = 1 2 P
b M = L 2 λ D 2 P = 1 2 ( L λ D P ) .
b α L 2 α L α b 3 L 2 α .
[ f x 1 ' , f x 2 ' ] = [ L 2 + ξ λ D , L 2 + ξ λ D ] and [ f y 1 ' , f y 2 ' ] = [ L 2 b λ D , L 2 b λ D ]
L 2 + ξ M λ D = 1 2 P .
ξ M = λ D 2 P L 2 .
[ u 1 , u 2 ] = [ H 2 K λ D , H 2 K λ D ] .
u M = ( H + L ' ) / 2 K λ D .
[ u 1 ' , u 2 ' ] = [ ξ H 2 K λ D , ξ + H 2 K λ D ] .
[ u 1 ' , u 2 ' ] = [ 0 K λ D , H K λ D ] = [ 0 , 2 u 2 ]
[ u 1 ' , u 2 ' ] = [ H 2 K λ D , 3 H 2 K λ D ] = [ u 2 , 3 u 2 ] .

Metrics