Abstract

A very simple and fast Mach­Zehnder electro-optic modulator based on a p-i-n configuration, operating at λ = 1.55 μm, has been fabricated at 170°C using the low cost technology of hydrogenated amorphous silicon (a-Si:H). In spite of the device simplicity, refractive index modulation was achieved through the free carrier dispersion effect resulting in characteristic rise and fall times of ~2.5 ns. By reverse biasing the p-i-n device, the voltage-length product was estimated to be Vπ∙Lπ = 40 V⋅cm both from static and dynamic measurements. Such bandwidth performance in as-deposited a-Si:H demonstrates the potential of this material for the fabrication of fast active photonic devices integrated on standard microelectronic substrates.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
    [CrossRef]
  2. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).
  3. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
    [CrossRef]
  4. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  5. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
    [CrossRef] [PubMed]
  6. K. Lee, D. J. Shin, H. Ji, K. Na, S. G. Kim, J. Bok, Y. You, S. Kim, I. Joe, S. D. Suh, J. Pyo, Y. Shin, K. Ha, Y. D. Park, and C. H. Chung, “10Gb/s Silicon Modulator Based on Bulk-Silicon Platform for DRAM Optical Interface,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA033.
  7. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
    [CrossRef]
  8. K. Preston, C. B. Poitras, M. Thompson, and M. Lipson, “Photonic devices in low-temperature laser-crystallized deposited silicon,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (2010).
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
    [CrossRef]
  10. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
    [CrossRef]
  11. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
    [CrossRef]
  12. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
    [CrossRef] [PubMed]
  13. F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in alpha-Si:H/alpha-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
    [CrossRef] [PubMed]
  14. S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
    [CrossRef]
  15. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
    [CrossRef] [PubMed]
  16. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19(4), 2941–2951 (2011).
    [CrossRef] [PubMed]
  17. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.

2011 (2)

2010 (3)

2009 (2)

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

2008 (3)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in alpha-Si:H/alpha-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

2006 (1)

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

2005 (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

1998 (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Ahn, D.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Beals, M.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Coppola, G.

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Della Corte, F. G.

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express 19(4), 2941–2951 (2011).
[CrossRef] [PubMed]

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in alpha-Si:H/alpha-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Di Cioccio, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Dong, P.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Elshaari, A. W.

Fedeli, J. M.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Fedeli, J.-M.

Fournier, M.

Gardes, F. Y.

Gondarenko, A.

Grosse, P.

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Hong, C.-Y.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Hu, Y.

Kimerling, L. C.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Lipson, M.

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Liu, J.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Mandorlo, F.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Manipatruni, S.

Marris-Morini, D.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Mashanovich, G.

Michel, J.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

Narayanan, K.

Nigro, M. A.

Orobtchouk, R.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Pan, D.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Poitras, C. B.

Preble, S. F.

Preston, K.

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Rao, S.

Reed, G. T.

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Rojo-Romeo, P.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Schmidt, B.

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Seassal, C.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Sparacin, D. K.

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Summonte, C.

Suriano, F.

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in alpha-Si:H/alpha-SiCN waveguiding multistacks,” Opt. Express 16(10), 7540–7550 (2008).
[CrossRef] [PubMed]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Thomson, D. J.

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Vivien, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Adv. Opt. Technol. (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 1–15 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92(15), 151104 (2008).
[CrossRef]

Electron. Lett. (1)

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett. 41(25), 1377–1378 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 173–178 (2010).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 997–1002 (1998).
[CrossRef]

Opt. Commun. (1)

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282(9), 1767–1770 (2009).
[CrossRef]

Opt. Express (6)

Proc. SPIE (1)

L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006).
[CrossRef]

Other (4)

T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).

K. Preston, C. B. Poitras, M. Thompson, and M. Lipson, “Photonic devices in low-temperature laser-crystallized deposited silicon,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (2010).

K. Lee, D. J. Shin, H. Ji, K. Na, S. G. Kim, J. Bok, Y. You, S. Kim, I. Joe, S. D. Suh, J. Pyo, Y. Shin, K. Ha, Y. D. Park, and C. H. Chung, “10Gb/s Silicon Modulator Based on Bulk-Silicon Platform for DRAM Optical Interface,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA033.

RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Top view of the MZI a-Si:H-based modulator. (b) SEM image of the splitting region. (c) SEM cross-sectional view of the fabricated rib waveguide phase shifter. The optical mode propagates along the z direction.

Fig. 2
Fig. 2

Schematic cross-section of the realised rib waveguides (a), refractive index profile (b) along the vertical direction, and TE (c) and TM (d) simulated fundamental optical modes in the <x,y> plane. Parametric beam propagation method (BPM) simulations allowed to design a single-mode, birefringence-free, waveguide-integrated p-i-n device.

Fig. 3
Fig. 3

Normalized optical transmission vs. DC voltage for the 1.3 cm-long arm a-Si:H MZ modulator. The required voltage to achieve a π phase shift is ~31 V.

Fig. 4
Fig. 4

Modulated electrical signal amplitude at the photodiode output for a 31 Vp (corresponding to Vπ) pulses, duty-cycle 20%. The measured rise and fall times (20%-80%) are ~2.3 ns and the modulation depth is 14%. The oscilloscope timescale is 20 ns/div.

Tables (1)

Tables Icon

Table 1 Fundamental Electrical and Optical Parameters Measured at λ = 1.55 μm

Metrics