Abstract

For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 μm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996).
    [CrossRef]
  2. A. F. J. Levi, “Optical interconnections in systems,” Proc. IEEE 88(6), 750–757 (2000).
    [CrossRef]
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  4. K. H. Hahn, “POLO-parallel optical links for gigabyte data communications,” in Proc. 8th Annu. Meeting LEOS, San Francisco, CA, 228–229 (1995).
  5. Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, J. P. Bristow, and A. Yue Liu, Peczalski, J. Rowlette, A. Plotts, J. Stack, M. Kadar-Kallen, J. Yardley, L. Eldada, R. M. Osgood, R. Scarmozzino, S. H. Lee, V. Ozgus, and S. Patra, “Polymer optical interconnect technology (POINT)-optoelectronic packaging and interconnect for board and backplane applications,” in Proc. 46th Electron. Compon. Technol. Conf., Orlando, FL, 308–315 (1996).
  6. L. J. Norton, F. Carney, N. Choi, C. K. Y. Chun, R. K. Denton, Jr., D. Diaz, J. Knapp, M. Meyering, C. Ngo, S. Planer, G. Raslun, E. Reyes, J. Sauvageau, D. B. Schwartz, S. G. Shook, J. Yoder, and Y. Wen, “OPTOBUSTM I: A production parallel fiber optical interconnect,” in Proc. 47th Electron. Compon. Technol. Conf., San Jose, CA, 204–209 (1997).
  7. H. Karstensen, L. Melchior, V. Plickert, K. Drogemuller, J. Blank, T. Wipiejewski, H.-D. Wolf, J. Wieland, G. Jeiter, R. Dal'Ara, and M. Blaser, “Parallel optical link (PAROLI) for multichannel gigabit rate interconnections,” in Proc. 48th Electron. Compon. Technol. Conf., Seattle, WA, 747–754 (1998).
  8. M. Usui, N. Sato, A. Ohki, N. Matsuura, N. Tanaka, K. Enbutsu, M. Amano, M. Hikita, T. Kagawa, K. Katsura, and Y. Ando, “ParaBIT-1: 60-Gb/s-throughput parallel optical interconnect module,” in Proc. 50th Electron. Compon. Technol. Conf., LasVegas, NV, 1252–1258 (2000).
  9. D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang, and W. Scheel, “New technology for electrical/optical systems on module and board level: The EOCB approach,” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 970–974 (2000).
  10. K. Schmieder and K.-J. Wolter, “Electro-optical printed circuit board (EOPCB),” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 749–753 (2000).
  11. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley Interscience, 2001).
  12. FIMMWAVE. ver. 5.0, a vectorial waveguide solver. Photon Design, 2006.
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  15. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [CrossRef] [PubMed]
  16. J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
    [CrossRef]
  17. E. Griese, “A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Packag. 24(3), 375–383 (2001).
    [CrossRef]
  18. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
    [CrossRef]
  19. A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
    [CrossRef]

2009 (1)

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

2008 (1)

2006 (1)

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

2003 (1)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

2001 (1)

E. Griese, “A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Packag. 24(3), 375–383 (2001).
[CrossRef]

2000 (2)

A. F. J. Levi, “Optical interconnections in systems,” Proc. IEEE 88(6), 750–757 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

1996 (1)

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Ando, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

Arai, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

Bakir, M. S.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Bhusari, D.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Choe, J.-S.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Glebov, A. L.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Griese, E.

E. Griese, “A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Packag. 24(3), 375–383 (2001).
[CrossRef]

Ishii, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

Ju, J. J.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Kim, J. T.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Kim, M. S.

Kim, M.-S.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Kohl, P.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Koike, S.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996).
[CrossRef]

Lee, J.-M.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Lee, M. G.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Lee, M.-H.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Levi, A. F. J.

A. F. J. Levi, “Optical interconnections in systems,” Proc. IEEE 88(6), 750–757 (2000).
[CrossRef]

Meindl, J. D.

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996).
[CrossRef]

Park, S.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Park, S. K.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Shin, S.-Y.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(1), 55–76 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett. 18(8), 974–976 (2006).
[CrossRef]

IEEE Trans. Adv. Packag. (2)

E. Griese, “A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Packag. 24(3), 375–383 (2001).
[CrossRef]

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Proc. IEEE (2)

A. F. J. Levi, “Optical interconnections in systems,” Proc. IEEE 88(6), 750–757 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Other (10)

K. H. Hahn, “POLO-parallel optical links for gigabyte data communications,” in Proc. 8th Annu. Meeting LEOS, San Francisco, CA, 228–229 (1995).

Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, J. P. Bristow, and A. Yue Liu, Peczalski, J. Rowlette, A. Plotts, J. Stack, M. Kadar-Kallen, J. Yardley, L. Eldada, R. M. Osgood, R. Scarmozzino, S. H. Lee, V. Ozgus, and S. Patra, “Polymer optical interconnect technology (POINT)-optoelectronic packaging and interconnect for board and backplane applications,” in Proc. 46th Electron. Compon. Technol. Conf., Orlando, FL, 308–315 (1996).

L. J. Norton, F. Carney, N. Choi, C. K. Y. Chun, R. K. Denton, Jr., D. Diaz, J. Knapp, M. Meyering, C. Ngo, S. Planer, G. Raslun, E. Reyes, J. Sauvageau, D. B. Schwartz, S. G. Shook, J. Yoder, and Y. Wen, “OPTOBUSTM I: A production parallel fiber optical interconnect,” in Proc. 47th Electron. Compon. Technol. Conf., San Jose, CA, 204–209 (1997).

H. Karstensen, L. Melchior, V. Plickert, K. Drogemuller, J. Blank, T. Wipiejewski, H.-D. Wolf, J. Wieland, G. Jeiter, R. Dal'Ara, and M. Blaser, “Parallel optical link (PAROLI) for multichannel gigabit rate interconnections,” in Proc. 48th Electron. Compon. Technol. Conf., Seattle, WA, 747–754 (1998).

M. Usui, N. Sato, A. Ohki, N. Matsuura, N. Tanaka, K. Enbutsu, M. Amano, M. Hikita, T. Kagawa, K. Katsura, and Y. Ando, “ParaBIT-1: 60-Gb/s-throughput parallel optical interconnect module,” in Proc. 50th Electron. Compon. Technol. Conf., LasVegas, NV, 1252–1258 (2000).

D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang, and W. Scheel, “New technology for electrical/optical systems on module and board level: The EOCB approach,” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 970–974 (2000).

K. Schmieder and K.-J. Wolter, “Electro-optical printed circuit board (EOPCB),” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 749–753 (2000).

R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley Interscience, 2001).

FIMMWAVE. ver. 5.0, a vectorial waveguide solver. Photon Design, 2006.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Architectural concept of a metal-slotted hybrid optical waveguides. The proposed waveguide is based on metallic circuit structures in a printed circuit board (PCB) and is embedded in the conventional PCB layers.

Fig. 2
Fig. 2

Calculated E-field distribution of the guided modes. (a) and (c) are the quasi-TE mode. (b) and (d) are quasi-TM modes. The field profiles along the x- and y-axis are also exhibited.

Fig. 3
Fig. 3

Calculated propagation loss of the proposed metal-slotted hybrid optical waveguides depending on the metal slot width and metal film thickness. The metal-slot width is the same to the dielectric thickness (w = td). The inset shows the waveguide structure.

Fig. 4
Fig. 4

Characteristics of the metal-slotted hybrid optical waveguide. (a) Infrared image of the observed far-field guided mode: white dot lines guide the Cu thin film consisting of the proposed hybrid optical waveguide. (b) Measured propagation and coupling losses.

Fig. 5
Fig. 5

Assembled optical signal transmission experiment set-up. (a) The input and the output facets of the fabricated metal-slotted hybrid optical waveguide are coupled with the VCSEL and the photodiode, respectively. (b) Measured optical eye diagram for 2.5 Gbps modulated optical signal.

Metrics