Abstract

Under appropriate laser exposure, a thin film of InSb exhibits a sub-wavelength thermally modified area that can be used to focus light beyond the diffraction limit. This technique, called Super-Resolution Near-Field Structure, is a potential candidate for ultrahigh density optical data storage and many other high-resolution applications. We combined near field microscopy, confocal microscopy and time resolved pump-probe technique to directly measure the induced sub-diffraction limited spot in the near-field regime. The measured spot size was found to be dependent on the laser power and a decrease of 25% (100nm) was observed. Experimental evidences that support a threshold-like simulation model to describe the effect are also provided. The experimental data are in excellent agreement with rigorous simulations obtained with a three dimensional Finite Element Method code.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
    [CrossRef]
  2. M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
    [CrossRef]
  3. E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
    [CrossRef]
  4. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt.36, 4339–4348 (1997).
    [CrossRef] [PubMed]
  5. W. H. Yeh and M. Mansuripur, “Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens,” Appl. Opt.39, 302–315 (2000).
    [CrossRef]
  6. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
    [CrossRef]
  7. J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
    [CrossRef]
  8. J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
    [CrossRef]
  9. K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
    [CrossRef]
  10. K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
    [CrossRef]
  11. R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
    [CrossRef]
  12. S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
    [CrossRef]
  13. M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
    [CrossRef]
  14. T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
    [CrossRef]
  15. J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
    [CrossRef]
  16. A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
    [CrossRef]
  17. G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
    [CrossRef]
  18. J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
    [CrossRef]
  19. A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
    [CrossRef]
  20. T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
    [CrossRef]
  21. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996).
    [CrossRef]
  22. A. J. Wachters and H. P. Urbach, “Finite-element model for electromagnetic scattering problems,” Technical Note Phillips Research Europe, PR-TN 00042 (2008).
  23. X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A24, 866–881 (2007).
    [CrossRef]
  24. J. Pichon, “Super-resolution optical data storage,” Thesys (2009).
  25. A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
    [CrossRef]
  26. M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
    [CrossRef]

2011

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
[CrossRef]

2010

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

2009

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

2008

S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
[CrossRef]

J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
[CrossRef]

2007

2006

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

2004

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

2001

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

2000

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

W. H. Yeh and M. Mansuripur, “Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens,” Appl. Opt.39, 302–315 (2000).
[CrossRef]

1999

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

1998

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
[CrossRef]

1997

1996

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996).
[CrossRef]

1993

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
[CrossRef]

Anciant, R.

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

André, B.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

Aoki, K.

S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
[CrossRef]

Armand, M. F.

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

Assafrao, A. C.

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

Atoda, N.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
[CrossRef]

Baba, T.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Betzig, E.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

Bruneau, J. M.

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

Büchel, D.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

Chichester, R. J.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
[CrossRef]

DiGiovanni, D. J.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

Eto, D.

S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
[CrossRef]

Fery, C.

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

Féry, C.

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

Fons, P.

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Franko, M.

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996).
[CrossRef]

Fuji, H.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

Fukaya, T.

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

Fukuda, H.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Gidon, S.

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

Grubb, S. G.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

Hayashi, S.

Hoelzemann, H.

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

Hwang, I.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

Hyot, B.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

Ichimura, I.

Kikukawa, T.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Kim, J.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Kim, J. S.

J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
[CrossRef]

Kino, G. S.

Knappmann, S.

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

Kolobov, A.

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

Kolobov, A. V.

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

Kumagai, M.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Kuwahara, M.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

Kwak, K.

J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
[CrossRef]

Lee, M. B.

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

Lee, Y.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

Lin, W. C.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

Mansuripur, M.

Men, L.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Nakai, K.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

Nakano, T.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
[CrossRef]

Ohkubo, S.

S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
[CrossRef]

Ohmaki, M.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

Pacearescu, L.

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

Pereira, S. F.

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

Pichon, J.

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

J. Pichon, “Super-resolution optical data storage,” Thesys (2009).

Pilard, G.

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
[CrossRef]

Poupinet, L.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

Sato, A.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

Shima, T.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

Shinbori, S.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

Shinoda, M.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

Simpson, R. E.

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

Suzuki, M.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Suzuki, O.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Tachibana, A.

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Takeshita, N.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

Taketoshi, N.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Tominaga, J.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
[CrossRef]

Tran, C. D.

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996).
[CrossRef]

Tsai, D. P.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

Tsutsumi, K.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Urbach, H. P.

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
[CrossRef]

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A24, 866–881 (2007).
[CrossRef]

A. J. Wachters and H. P. Urbach, “Finite-element model for electromagnetic scattering problems,” Technical Note Phillips Research Europe, PR-TN 00042 (2008).

von Riewel, L.

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

Wachters, A. J.

X. Wei, A. J. Wachters, and H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A24, 866–881 (2007).
[CrossRef]

A. J. Wachters and H. P. Urbach, “Finite-element model for electromagnetic scattering problems,” Technical Note Phillips Research Europe, PR-TN 00042 (2008).

Wang, X.

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

Wei, X.

Weiner, J. S.

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

Yagi, T.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

Yamakawa, Y.

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

Yeh, W. H.

You, C.Y.

J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
[CrossRef]

Zhao, H.

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an sb thin film,” Appl. Phys. Lett.73, 2078–2080 (1998).
[CrossRef]

R. E. Simpson, P. Fons, X. Wang, A. V. Kolobov, T. Fukaya, and J. Tominaga, “Non-melting super-resolution near-field apertures in sb–te alloys,” Appl. Phys. Lett.97, 161906 (2010).
[CrossRef]

S. Ohkubo, K. Aoki, and D. Eto, “Temperature dependence of optical constants for insb films including molten phases,” Appl. Phys. Lett.92, 011919 (2008).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett.44, 651–653 (1984).
[CrossRef]

E. Betzig, S. G. Grubb, R. J. Chichester, D. J. DiGiovanni, and J. S. Weiner, “Fiber laser probe for near-field scanning optical microscopy,” Appl. Phys. Lett.63, 3550–3552 (1993).
[CrossRef]

J. Appl. Phys.

T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys.89, 6139–6144 (2001).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public.

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “Scalar readout model for super-rens focused spot,” J. Europ. Opt. Soc. Rap. Public.6, 11056 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

A. C. Assafrao, S. F. Pereira, and H. P. Urbach, “On the focused field embedded in a super rens medium,” Jpn. J. Appl. Phys.50, 102206 (2011).
[CrossRef]

M. Kuwahara, O. Suzuki, N. Taketoshi, Y. Yamakawa, T. Yagi, P. Fons, K. Tsutsumi, M. Suzuki, T. Fukaya, J. Tominaga, and T. Baba, “Measurements of temperature dependence of optical and thermal properties of optical disk materials,” Jpn. J. Appl. Phys.45, 1419–1421 (2006).
[CrossRef]

G. Pilard, C. Féry, L. Pacearescu, H. Hoelzemann, and S. Knappmann, “Study of super-resolution read-only-memory disk with a semiconducting or chalcogenide mask layer,” Jpn. J. Appl. Phys.48, 03A064 (2009).
[CrossRef]

J. Tominaga, J. Kim, H. Fuji, D. Büchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons,” Jpn. J. Appl. Phys.40, 1831–1834 (2001).
[CrossRef]

M. Kuwahara, T. Nakano, J. Tominaga, M. B. Lee, and N. Atoda, “High-speed optical near-field photolithography by super resolution near-field structure,” Jpn. J. Appl. Phys.38, L1079–L1081 (1999).
[CrossRef]

M. Kuwahara, T. Shima, A. Kolobov, and J. Tominaga, “Thermal origin of readout mechanism of light-scattering super-resolution near-field structure disk,” Jpn. J. Appl. Phys.43, L8–L10 (2004).
[CrossRef]

T. Shima, M. Kuwahara, T. Fukaya, T. Nakano, and J. Tominaga, “Super-resolutional readout disk with metal-free phthalocyanine recording layer,” Jpn. J. Appl. Phys.43, L88–L90 (2004).
[CrossRef]

J. S. Kim, K. Kwak, and C.Y. You, “Signal modulation of super read only memory with thermally activated aperture model,” Jpn. J. Appl. Phys.47, 5845–5847 (2008).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys.39, 957–961 (2000).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, B. Hyot, B. André, and L. Poupinet, “Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material insb,” Jpn. J. Appl. Phys.49, 08KE01 (2010).
[CrossRef]

K. Nakai, M. Ohmaki, N. Takeshita, M. Shinoda, I. Hwang, Y. Lee, H. Zhao, J. Kim, B. Hyot, B. André, L. Poupinet, T. Shima, T. Nakano, and J. Tominaga, “First playback of high-definition video contents from super-resolution near-field structure optical disc,” Jpn. J. Appl. Phys.49, 08KE02 (2010).
[CrossRef]

Rev. Sci. Inst.

M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Inst.67, 1–18 (1996).
[CrossRef]

SPIE

J. Pichon, R. Anciant, J. M. Bruneau, B. Hyot, S. Gidon, M. F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution bd rom optical disk readout,” SPIE6282, 628219 (2006).
[CrossRef]

A. C. Assafrao, S. F. Pereira, H. P. Urbach, C. Fery, L. von Riewel, and S. Knappmann, “A numerical model for superresolution effect in optical discs,” SPIE7730, 77301J (2010).
[CrossRef]

Other

A. J. Wachters and H. P. Urbach, “Finite-element model for electromagnetic scattering problems,” Technical Note Phillips Research Europe, PR-TN 00042 (2008).

J. Pichon, “Super-resolution optical data storage,” Thesys (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the aperture and scatterer types of Super-RENS effect. Under laser radiation, a sub-wavelength thermally induced region, smaller than the area of the focused spot, is generated in the super resolution layer. Within this region, the sample optical parameters (i.e., the permitivitty) are temporarily changed. For certain materials, the induced region (represented in yellow, on the left) becomes less absorbing than the outer region (blue). Therefore, an optical aperture is formed. For the InSb sample, the induced region (represented by green, on the right) becomes more absorbing than the outer region. Therefore, an optical scatterer is formed.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup. (bottom) Optical arrangement for generating a round shaped pulsed laser beam, which can be either used for time resolved measurements (in this case, the sample is placed on the moving stage and the transmitted signal collected by the Fast Photo Detector) or redirected to the SNOM measurement unit via a single mode optical fiber. Please notice that the Super-RENS sample is relocated to the SNOM microscope in this case. (top) Lightpath inside the SNOM microscope. The modified scanning table holds the DVD lens and the Super-RENS sample. Confocal microscopy is performed in reflection with a red laser source. Near-field measurements are taken with the SNOM tip in contact with the sample surface. An example of a measured focused spot can be seen on the top left.

Fig. 3
Fig. 3

Confocal microscopy measurements of the Super-RENS surface after permanently changing the optical parameters with a high intensity (a) defocused laser spot and (b) focused laser spot.

Fig. 4
Fig. 4

Time response of the Super-RENS InSb sample. (a) The measured linear response of the ZnS reference sample and the InSb sample for a single pulse with 250μs of duration. The decay observed for the InSb sample is due to the change in the optical parameters. (b) Simulated temperature distribution as function of time using an Airy focused spot as the heat source term. The temperature values were taken in the center of the focused spot (r= 0nm) and at radii r= 300nm and r= 600nm, normalized by the temperature value obtained at 5μs. A stationary state is reached after approximately 3μs.

Fig. 5
Fig. 5

Schematics of the threshold model and representation of the FEM computational domain. The Super-RENS effect is described by a local change in the refractive index of the super resolution material in a region inside the incident focused spot. This region is considered to be a cylinder with radius r and height equals to the thickness of the Super-RENS layer. The refractive index inside the cylinder is set to n2. Outside the cylinder the refractive index remains n1, corresponding to the refractive index of the InSb layer in its crystalline state. The 3D computational domain has size of 840 × 840 × 300nm3 with refined mesh in the portion where cylinder has to be represented. The refractive indices used, obtained from Ref. [25], are also provided.

Fig. 6
Fig. 6

Finite element method simulation. (a) Distribution of the modulus of the total electric field computed for the Super-RENS stack in the presence of a r= 50nm scatterer region. (b) Modulus of the electric field profile computed in the plane represented by the dotted yellow line in (a) for scatterer regions with radius r= 50nm, r= 170nm and = 200nm.

Fig. 7
Fig. 7

Measured spots for the reference sample (ZnS) and the super resolution layer (InSb). (a) Spot intensity distribution measured for InSb and ZnS samples. (b) Intensity profile of (a). The Super-RENS focused spot is 100nm (in terms of FWHM) smaller when compared to the reference spot. Here, the pulsed laser beam has a duty cycle of 50%, with 200ns of duration and peak intensity of 2.0mW.

Fig. 8
Fig. 8

Measured and simulated spot size as function of the laser power and scatterer radius, respectively, for a 200ns incident pulse length. A spot size reduction occurs for the scatterer-type of Super-RENS material in a certain laser power range. At this range, the measured spot size is not limited by diffraction. A good agreement between measurements and simulation is found.

Fig. 9
Fig. 9

Measured and simulated spot intensity profiles in the positions (a)–(d) indicated in the Fig. 8.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 T ( r , t ) + 1 k g ( r , t ) = 1 α T ( r , t ) t

Metrics