Abstract

We synthetize some new perovskite thin layers: p-fluorophenethylamine tetraiodoplumbate pFC6H4C2H4NH3)2PbI4 perovskite molecules, included in a PMMA matrix. We report on the optical properties of the perovskite doped PMMA thin layers and we show that these layers are much more stable under laser illumination and present a smaller roughness than the spin-coated (C6H5C2H4NH3)2PbI4 layers. These new layers are used as the active material in vertical microcavities and the strong-coupling regime is evidenced by a clear anti-crossing appearing in the angular-resolved reflectivity experiments at room temperature.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
    [CrossRef] [PubMed]
  2. R. Houdré, “Early stages of continous wave experiments on cavity-polaritons,” Phys. Status Solidi B242, 2167–2196(2005).
    [CrossRef]
  3. H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).
  4. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
    [CrossRef] [PubMed]
  5. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010).
    [CrossRef]
  6. D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
    [CrossRef]
  7. D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
    [CrossRef]
  8. N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
    [CrossRef]
  9. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
    [CrossRef] [PubMed]
  10. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
    [CrossRef]
  11. A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
    [CrossRef]
  12. G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
    [CrossRef]
  13. S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
    [CrossRef]
  14. T. Ishihara, Optical Properties of Low Dimensional Materials (edited by T. Ogawa and Y. Kanemitsu, (World Scientific, 1995), chap. 6, p. 288.
  15. S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
    [CrossRef]
  16. K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
    [CrossRef] [PubMed]
  17. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
    [CrossRef]
  18. T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
    [CrossRef]
  19. K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
    [CrossRef]
  20. N. Kitazawa, “Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films,” J. Mater. Sci.33, 1441–1444 (1998).
    [CrossRef]

2011

H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).

2010

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010).
[CrossRef]

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

2009

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

2008

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
[CrossRef] [PubMed]

2006

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

2005

R. Houdré, “Early stages of continous wave experiments on cavity-polaritons,” Phys. Status Solidi B242, 2167–2196(2005).
[CrossRef]

2004

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

2003

N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
[CrossRef]

2001

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

1999

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

1998

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

N. Kitazawa, “Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films,” J. Mater. Sci.33, 1441–1444 (1998).
[CrossRef]

1992

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Abid, Y.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Al Choueiry, A.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

Andre, R.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Armitage, A.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

Audebert, P.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

Bloch, J.

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Boissière, C.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

Bongiovanni, G.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Bouchoule, S.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

Bougzhala, H.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Boukheddaden, K.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Bradley, D.

N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
[CrossRef]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

Bréhier, A.

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

Choueiry, A. A.

Ciuti, C.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Clavier, G.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

Dammak, T.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Dang, L. S.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Davanço, M.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
[CrossRef] [PubMed]

Deleporte, E.

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

Deveaud, B.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Doyennette, L.

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
[CrossRef] [PubMed]

Fujita, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

Galmiche, L.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

Gauthron, K.

Gibbs, H.

H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).

Houdré, R.

R. Houdré, “Early stages of continous wave experiments on cavity-polaritons,” Phys. Status Solidi B242, 2167–2196(2005).
[CrossRef]

Ishihara, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

T. Ishihara, Optical Properties of Low Dimensional Materials (edited by T. Ogawa and Y. Kanemitsu, (World Scientific, 1995), chap. 6, p. 288.

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Kamata, T.

N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
[CrossRef]

Kéna-Cohen, S.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
[CrossRef] [PubMed]

Khitrova, G.

H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).

Kikuchi, K.

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

Kitazawa, N.

N. Kitazawa, “Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films,” J. Mater. Sci.33, 1441–1444 (1998).
[CrossRef]

Koch, S.

H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).

Koubaa, M.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Kuitani, T.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

Kundermann, S.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Lafosse, X.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

Lanty, G.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

Largeau, L.

Lauret, J.

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

Lauret, J. S.

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

Lauret, J.-S.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

Lidzey, D.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

Mauguin, O.

Mlayah, A.

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Mura, A.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Parashkov, R.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

Rikukawa, M.

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

Saba, M.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Sanui, K.

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

Sato, Y.

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

Skolnick, M.

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

Staehli, J. L.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Takada, N.

N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
[CrossRef]

Takeoka, Y.

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

Thierry-Mieg, V.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

Virgili, T.

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

Walker, S.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

Wei, Y.

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Whittaker, D.

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

Zhang, S.

K. Gauthron, J.-S. Lauret, L. Doyennette, G. Lanty, A. A. Choueiry, S. Zhang, A. Bréhier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte,“Optical spectroscopy of 2D layered (C6H5C2H4NH3)2PbI4,” Opt. Express18, 5912 (2010).
[CrossRef] [PubMed]

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

Acta Mater.

S. Zhang, G. Lanty, J. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater.57, 3301–3309 (2009).
[CrossRef]

Appl. Phys. Lett.

A. Bréhier, R. Parashkov, J. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett.89, 171110 (2006).
[CrossRef]

G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett.93, 081101 (2008).
[CrossRef]

N. Takada, T. Kamata, and D. Bradley, “Polariton emission from polysilane-based organic microcavities,” Appl. Phys. Lett.82, 1812–1814 (2003).
[CrossRef]

Curr. Appl. Phys.

K. Kikuchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Structure and optical properties of lead iodide based twodimensional perovskite compounds containing fluorophenethylamines,” Curr. Appl. Phys.4, 599 (2004).
[CrossRef]

J. Mater. Sci.

N. Kitazawa, “Preparation and optical properties of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films,” J. Mater. Sci.33, 1441–1444 (1998).
[CrossRef]

J. Phys. Chem. C

T. Dammak, M. Koubaa, K. Boukheddaden, H. Bougzhala, A. Mlayah, and Y. Abid, “Two-dimensional excitons and photoluminescence properties of the organic/inorganic (4-FC6H4C2H4NH3)2[PbI4] nanomaterial,” J. Phys. Chem. C113, 19305–19309 (2009).
[CrossRef]

Materials

S. Zhang, P. Audebert, Y. Wei, A. Al Choueiry, G. Lanty, A. Bréhier, L. Galmiche, G. Clavier, C. Boissière, J.-S. Lauret, and E. Deleporte, “Preparations and characterizations of luminescent two dimensional organic-inorganic perovskite semiconductors,” Materials3, 3385–3406 (2010).
[CrossRef]

N. J. Phys.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys.10, 065007 (2008).
[CrossRef]

Nat. Photonics

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4, 371–375 (2010).
[CrossRef]

H. Gibbs, G. Khitrova, and S. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics5, 275 (2011).

Nature

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. L. Staehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef] [PubMed]

D. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature395, 53–55 (1999).
[CrossRef]

Opt. Express

Phys. Rev. B

T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavitites at room temperature,” Phys. Rev. B57, 12428 (1998).
[CrossRef]

Phys. Rev. Lett.

D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, “Room temperature polariton emission from strongly coupled organic semiconductor microcavities,” Phys. Rev. Lett.82, 3316–3319 (1999).
[CrossRef]

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong exciton-photon coupling in an organic single crystal microcavity,” Phys. Rev. Lett.101, 116401 (2008).
[CrossRef] [PubMed]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69, 3314–3317 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi B

R. Houdré, “Early stages of continous wave experiments on cavity-polaritons,” Phys. Status Solidi B242, 2167–2196(2005).
[CrossRef]

Other

T. Ishihara, Optical Properties of Low Dimensional Materials (edited by T. Ogawa and Y. Kanemitsu, (World Scientific, 1995), chap. 6, p. 288.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical density (scatters) and photoluminescences spectra (solid lines), at T = 300K, of (a) a 50 nm PEPI thin layer, (b) 50 nm pFPEPI thin layer and (c) a 1 μm pFPEPI doped PMMA thin layer. The description of the samples and of their preparation is found in the text. (d) Photobleaching of pFPEPI doped PMMA, pPEPI, PEPI thin layers under the laser HeCd 325nm for 1800s. (e) Photobleaching of pFPEPI doped PMMA, PEPI thin layers under the laser HeCd 325nm for 6000s.

Fig. 2
Fig. 2

AFM images of (a) PEPI 10% and (b) pfPEPI doped PMMA.

Fig. 3
Fig. 3

(a) Reflectivity spectra of pFPEPI-PMMA cavity, for different angles of incidence. The dotted lines are guides to eyes showing the angular dispersion of LPB and UPB (b) PL spectra of pFPEPI-PMMA cavity. Signals are detected from 0º to 60º. Each PL curve at every degrees is fitted by two lorentzian peaks as it is shown for the particular value of 35 º (dashed lines) and the dotted line is a sum of the two lorentzian peaks. (c) Polariton dispersion (LPB and UPB)measured from reflectivity spectra uncoupled perovskite exciton Eper and cavity photon Eph are also shown. The stars represent the energy position of the PL peaks observrd in Fig. 3(b)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = 1 N i = 1 N ( x i x ave ) 2
E ph ( θ ) = E 0 1 ( sin θ n eff ) 2
E UPB , LPB = E ph ( θ ) + E per 2 ± V 2 + ( E ph ( θ ) E per ) 2 4

Metrics