Abstract

Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd3+ ion in a Cr3+,Nd3+:Gd3Sc2Ga3O12 crystal, associated to the R1,2(4F3/2)→Z5(4I9/2) and R1,2(4F3/2)→Z1(4I9/2) transitions. The former emissions show large linear pressure coefficients of −11.3 cm−1/GPa and −8.8 cm−1/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr3+ and Nd3+ absorption bands.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Holzapfel and N. S. Isaac, High-pressure techniques in chemistry and physics. A practical approach (Oxford University Press, 1997).
  2. J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
    [CrossRef]
  3. Th. Tröster, “Optical studies of non-metallic compounds under pressure” in Handbook on the Physics and Chemistry of Rare-earths, K. A. Gschneidner, Jr., J-C.G. Bünzli, and V. K. Pecharsky, eds. (Elsevier Science B.V., 2003), Vol. 33, pp. 515–589.
  4. K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
    [CrossRef]
  5. S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
    [CrossRef]
  6. K. Bray, “High pressure probes of electronic structure and luminescence properties of transition metal lanthanide systems,” Top. Curr. Chem. 213, 1–94 (2001).
    [CrossRef]
  7. S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
    [CrossRef]
  8. B. Struve and G. Huber, “Laser performance of Cr3+:Gd(Sc,Ga) garnet,” J. Appl. Phys. 57(1), 45–48 (1985).
    [CrossRef]
  9. H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
    [CrossRef] [PubMed]
  10. H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
    [CrossRef]
  11. J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
    [CrossRef] [PubMed]
  12. U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter 51(18), 12133–12141 (1995).
    [CrossRef] [PubMed]
  13. C. Görller-Walrand and K. Binnemans, “Rationalization of crystal-field parametrization” in Handbook on the Physics and Chemistry of Rare-earths, K. A. Gschneidner, Jr., and L Eyring, eds. (Elsevier Science B.V., 1996), Vol. 23, pp. 121–283.

2011 (1)

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

2008 (1)

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[CrossRef]

2006 (1)

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

2001 (1)

K. Bray, “High pressure probes of electronic structure and luminescence properties of transition metal lanthanide systems,” Top. Curr. Chem. 213, 1–94 (2001).
[CrossRef]

1996 (2)

H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
[CrossRef] [PubMed]

H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
[CrossRef]

1995 (1)

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter 51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

1988 (1)

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

1985 (1)

B. Struve and G. Huber, “Laser performance of Cr3+:Gd(Sc,Ga) garnet,” J. Appl. Phys. 57(1), 45–48 (1985).
[CrossRef]

1973 (1)

J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
[CrossRef]

Barnett, J. D.

J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
[CrossRef]

Block, S.

J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
[CrossRef]

Bray, K.

K. Bray, “High pressure probes of electronic structure and luminescence properties of transition metal lanthanide systems,” Top. Curr. Chem. 213, 1–94 (2001).
[CrossRef]

Bray, K. L.

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter 51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

Galanciak, D.

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

Hills, M. E.

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

Hömmerich, U.

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter 51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

Hua, H.

H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
[CrossRef] [PubMed]

H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
[CrossRef]

Huber, G.

B. Struve and G. Huber, “Laser performance of Cr3+:Gd(Sc,Ga) garnet,” J. Appl. Phys. 57(1), 45–48 (1985).
[CrossRef]

Kamisnka, A.

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

Kobyakov, S.

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

Kokta, M. R.

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

Lalla, E.

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

Lavín, V.

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

León-Luís, S. F.

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

Liu, J.

H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
[CrossRef]

Malinowski, M.

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

Mirov, S.

H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
[CrossRef] [PubMed]

Morrison, C. A.

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

Piermarini, G. J.

J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
[CrossRef]

Rodríguez-Mendoza, U. R.

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

Struve, B.

B. Struve and G. Huber, “Laser performance of Cr3+:Gd(Sc,Ga) garnet,” J. Appl. Phys. 57(1), 45–48 (1985).
[CrossRef]

Suchocki, A.

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

Syassen, K.

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[CrossRef]

Turner, G. A.

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

Vohra, Y. K.

H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
[CrossRef]

H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Kobyakov, A. Kamisnka, A. Suchocki, D. Galanciak, and M. Malinowski, “Nd3+-doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells,” Appl. Phys. Lett. 88(23), 234102 (2006).
[CrossRef]

High Press. Res. (1)

K. Syassen, “Ruby under pressure,” High Press. Res. 28(2), 75–126 (2008).
[CrossRef]

J. Appl. Phys. (1)

B. Struve and G. Huber, “Laser performance of Cr3+:Gd(Sc,Ga) garnet,” J. Appl. Phys. 57(1), 45–48 (1985).
[CrossRef]

J. Phys. Condens. Matter (1)

H. Hua, J. Liu, and Y. K. Vohra, “Pressure-induced amorphization in gadolinium scandium gallium garnet by x-ray diffraction and spectroscopic studies,” J. Phys. Condens. Matter 8(10), L139–L145 (1996).
[CrossRef]

Phys. Rev. B Condens. Matter (3)

J. B. Gruber, M. E. Hills, C. A. Morrison, G. A. Turner, and M. R. Kokta, “Absorption spectra and energy levels of Gd3+, Nd3+, and Cr3+ in the garnet Gd3Sc2Ga3O12.,” Phys. Rev. B Condens. Matter 37(15), 8564–8574 (1988).
[CrossRef] [PubMed]

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter 51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,” Phys. Rev. B Condens. Matter 54(9), 6200–6209 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. D. Barnett, S. Block, and G. J. Piermarini, “An optical fluorescence system for quantitative pressure measurement in diamond-anvil cell,” Rev. Sci. Instrum. 44(1), 1–9 (1973).
[CrossRef]

Sens. Actuators B Chem. (1)

S. F. León-Luís, U. R. Rodríguez-Mendoza, E. Lalla, and V. Lavín, “Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass,” Sens. Actuators B Chem. 158(1), 208–213 (2011).
[CrossRef]

Top. Curr. Chem. (1)

K. Bray, “High pressure probes of electronic structure and luminescence properties of transition metal lanthanide systems,” Top. Curr. Chem. 213, 1–94 (2001).
[CrossRef]

Other (3)

Th. Tröster, “Optical studies of non-metallic compounds under pressure” in Handbook on the Physics and Chemistry of Rare-earths, K. A. Gschneidner, Jr., J-C.G. Bünzli, and V. K. Pecharsky, eds. (Elsevier Science B.V., 2003), Vol. 33, pp. 515–589.

C. Görller-Walrand and K. Binnemans, “Rationalization of crystal-field parametrization” in Handbook on the Physics and Chemistry of Rare-earths, K. A. Gschneidner, Jr., and L Eyring, eds. (Elsevier Science B.V., 1996), Vol. 23, pp. 121–283.

W. B. Holzapfel and N. S. Isaac, High-pressure techniques in chemistry and physics. A practical approach (Oxford University Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Emission spectra associated to the 4F3/2(R1,2)→4I9/2(Z1-5) transition as a function of pressure at RT. Partial energy level diagram of the Nd3+ ion in the GSGG garnet crystal and emission transitions between the Stark levels of the 4F3/2 lowest emitting and the 4I9/2 ground multiplets.

Fig. 2
Fig. 2

Energy positions of the 4F3/2(R1,2)→4I9/2(Z1-5) emission lines as a function of pressure at RT.

Fig. 3
Fig. 3

Emission spectra associated to the 4F3/2(R1,2)→4I9/2(Z1-5) transition as a function of temperature at 8.8 GPa. The fluorescence intensity ratio R of the R1,2→Z1 transitions and its sensitivity S to changes of the temperature are given in the 10 to 300 K range.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H= H FREEN d 3+ + { B 0 4 [ C 0 4 + 5/14 ( C 4 4 + C 4 4 ) ]+ B 0 6 [ C 0 6 7/2 ( C 6 6 ) ] } cubic + { k=2,4,6 qk even B 0 k C 0 k + B q k ( C q k + C q k ) } noncubic

Metrics