Abstract

Noninvasive photoacoustic microscopy was developed to image intracellular gold nanorods with high optical-absorption contrast. The endocytosed gold nanorods in MCF7 cells can be detected and imaged with the home-made photoacoustic microscope. Cell nucleus and gold nanorods in cytoplasm were clearly identified after hematoxylin and eosin (H&E) staining with dual-wavelength excitation. The intracellular gold nanorods were successfully monitored, and that the time-dependent uptake and distribution of the gold nanorods in the cells were clearly shown. The result demonstrated an application of photoacoustic microscopy for complements to imaging of nonfluorescent nanoparticles, which will arm the in vivo microscopic imaging method to the nano-bio research.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  2. O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009).
    [CrossRef] [PubMed]
  3. T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
    [CrossRef] [PubMed]
  4. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  5. H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
    [CrossRef] [PubMed]
  6. D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).
  7. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  8. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  9. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  10. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
    [CrossRef] [PubMed]
  11. V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics5(2), 110–116 (2011).
    [CrossRef]
  12. D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
    [CrossRef] [PubMed]
  13. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  14. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
    [CrossRef]
  15. S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
    [CrossRef] [PubMed]
  16. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  17. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011).
    [CrossRef] [PubMed]
  18. Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  19. G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
    [CrossRef]
  20. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
    [CrossRef] [PubMed]
  21. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  22. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express19(3), 2426–2431 (2011).
    [CrossRef] [PubMed]
  23. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  24. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
    [CrossRef] [PubMed]
  25. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
    [CrossRef] [PubMed]
  26. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
    [CrossRef] [PubMed]
  27. P. C. Li, C. R. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express16(23), 18605–18615 (2008).
    [CrossRef] [PubMed]
  28. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006).
    [CrossRef] [PubMed]
  29. N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005).
    [CrossRef] [PubMed]

2012

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

2011

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics5(2), 110–116 (2011).
[CrossRef]

Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express19(3), 2426–2431 (2011).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011).
[CrossRef] [PubMed]

2010

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett.35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).

2009

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Z. X. Xie, S. L. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

2008

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

P. C. Li, C. R. Wang, D. B. Shieh, C. W. Wei, C. K. Liao, C. Poe, S. Jhan, A. A. Ding, and Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express16(23), 18605–18615 (2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

2007

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

2006

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005).
[CrossRef] [PubMed]

2004

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Ayyadevara, S.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Cao, J. M.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Cheng, J. X.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Conjusteau, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

Copland, J. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Dai, W.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Ding, A. A.

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Dong, W.

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Eghtedari, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Emelianov, S. Y.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Farkas, D. L.

D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Gaiduk, A.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Galanzha, E. I.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

Guo, L. N.

Han, Y.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Hansen, M. N.

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

Hao, W.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hu, S.

Huang, G. J.

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Huff, T. B.

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005).
[CrossRef] [PubMed]

Jhan, S.

Jiao, S. L.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Khlebtsov, N. G.

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Kotov, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Kotov, N. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

Lao, Y. Q.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Leif, R. C.

D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).

Li, P. C.

Liao, C. K.

Liao, Y. F.

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Mamedova, N.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Maslov, K.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Motamedi, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Nedosekin, D. A.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

Nicolau, D. V.

D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

O’Donnell, M.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Oraevsky, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

Oraevsky, A. A.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Oron, D.

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

Orrit, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Poe, C.

Popov, V. L.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Ruijgrok, P. V.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Schwartz, O.

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

Shashkov, E. V.

Shieh, D. B.

Shmookler Reis, R. J.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Tan, Z. L.

Tang, Z. L.

Tong, L.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tuchin, V. V.

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Wang, C. R.

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, L. V.

Wei, A.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wei, C. W.

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wu, Y. B.

Wu, Y. N.

Xiang, L. Z.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Xie, Z. X.

Xing, D.

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

Xiong, F.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Xu, H.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Yang, D. W.

Yang, S. H.

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

Yorulmaz, M.

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Yuan, Y.

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

Zhang, C.

Zhang, H. F.

Zhang, Y.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Zhao, Y.

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

Zharov, V. P.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics5(2), 110–116 (2011).
[CrossRef]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett.31(24), 3623–3625 (2006).
[CrossRef] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. J. Huang, S. H. Yang, Y. Yuan, and D. Xing, “Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods,” Appl. Phys. Lett.99(12), 123701 (2011).
[CrossRef]

Biophys. J.

D. A. Nedosekin, E. I. Galanzha, S. Ayyadevara, R. J. Shmookler Reis, and V. P. Zharov, “Photothermal confocal spectromicroscopy of multiple cellular chromophores and fluorophores,” Biophys. J.102(3), 672–681 (2012).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Nanosci. Nanotechnol.

H. Xu, W. Dai, Y. Han, W. Hao, F. Xiong, Y. Zhang, and J. M. Cao, “Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells,” J. Nanosci. Nanotechnol.10(11), 7406–7410 (2010).
[CrossRef] [PubMed]

Langmuir

T. B. Huff, M. N. Hansen, Y. Zhao, J. X. Cheng, and A. Wei, “Controlling the cellular uptake of gold nanorods,” Langmuir23(4), 1596–1599 (2007).
[CrossRef] [PubMed]

Mol. Imaging Biol.

J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol.6(5), 341–349 (2004).
[CrossRef] [PubMed]

Nano Lett.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Lett.7(7), 1914–1918 (2007).
[CrossRef] [PubMed]

O. Schwartz and D. Oron, “Background-free third harmonic imaging of gold nanorods,” Nano Lett.9(12), 4093–4097 (2009).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics

V. P. Zharov, “Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit,” Nat. Photonics5(2), 110–116 (2011).
[CrossRef]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Photochem. Photobiol.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol.85(1), 21–32 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol.

Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008).
[CrossRef] [PubMed]

Phys. Today

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today62(5), 34–39 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Proc. SPIE

D. L. Farkas, D. V. Nicolau, and R. C. Leif, “Gold nanorods for cell imaging with confocal reflectance microscopy and two-photon fluorescence microscopy,” Proc. SPIE7568, 75680A (2010).

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science330(6002), 353–356 (2010).
[CrossRef] [PubMed]

Small

N. R. Jana, “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles,” Small1(8-9), 875–882 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental schematic of the photoacoustic microscope.

Fig. 2
Fig. 2

Transverse spatial resolution of the photoacoustic microscope. (a) Fitting curve of the photoacoustic signal amplitude measured from gold nanosphere. (b) Photoacoustic imaging of a resolution test target. (c) Optical imaging of the resolution test target.

Fig. 3
Fig. 3

Photoacoustic microscopic imaging of cells and the intracellular gold nanorods. (a) Photoacoustic image of cell nucleus with excitation wavelength of 532 nm laser. (b) Photoacoustic image of gold nanorods in the cytoplasm with excitation wavelength of 720 nm laser. (c) Overlay image of (a) and (b). (d) Photograph of the H&E stained cells sample.

Fig. 4
Fig. 4

Photoacoustic monitoring of the uptake of intracellular gold nanorods with incubation of MCF7 cells for 2h (a), 6h (b) and 24h (c). (d) Fluorescent imaging of intracellular gold nanorods in MCF7 cells. (e) Photoacoustic signal intensity of the white cycle in (a), (b) and (c).

Metrics