Abstract

In this paper, a novel single-scatter path loss model is presented for non-line-of-sight (NLOS) ultraviolet (UV) channels. This model is developed based on the spherical coordinate system and extends the previous restricted models to handle the general noncoplanar case of arbitrarily pointing transmitter and receiver. Numerical examples on path loss are illustrated for various system geometries. These results are verified with a Monte Carlo (MC) model, demonstrating the validity of this model.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Reilly and C. Warde, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69(3), 464–470 (1979).
    [CrossRef]
  2. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8(12), 1964–1972 (1991).
    [CrossRef]
  3. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
    [CrossRef] [PubMed]
  4. H. Yin, S. Chang, X. Wang, J. Yang, J. Yang, and J. Tan, “Analytical model of non-line-of-sight single-scatter propagation,” J. Opt. Soc. Am. A 27(7), 1505–1509 (2010).
    [CrossRef] [PubMed]
  5. L. Wang, Z. Xu, and B. M. Sadler, “Non-line-of-sight ultraviolet link loss in noncoplanar geometry,” Opt. Lett. 35(8), 1263–1265 (2010).
    [CrossRef] [PubMed]
  6. H. Xiao, Y. Zuo, J. Wu, H. Guo, and J. Lin, “Non-line-of-sight ultraviolet single-scatter propagation model,” Opt. Express 19(18), 17864–17875 (2011).
    [CrossRef] [PubMed]
  7. L. Wang, Z. Xu, and B. M. Sadler, “An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry,” Opt. Lett. 36(7), 1224–1226 (2011).
    [CrossRef] [PubMed]
  8. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am. A 28(3), 420–428 (2011).
    [CrossRef] [PubMed]
  9. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
    [CrossRef]
  10. H. Yin, S. Chang, H. Jia, J. Yang, and J. Yang, “Non-line-of-sight multiscatter propagation model,” J. Opt. Soc. Am. A 26(11), 2466–2469 (2009).
    [CrossRef] [PubMed]
  11. H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wirel. Commun. Netw. 2010(1), 598572 (2010).
    [CrossRef]
  12. R. J. Drost, T. J. Moore, and B. M. Sadler, “UV communications channel modeling incorporating multiple scattering interactions,” J. Opt. Soc. Am. A 28(4), 686–695 (2011).
    [CrossRef] [PubMed]
  13. H. Yin, H. Jia, H. Zhang, X. Wang, S. Chang, and J. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am. A 28(10), 2082–2085 (2011).
    [CrossRef] [PubMed]
  14. G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
    [CrossRef] [PubMed]
  15. L. Wang, Y. Li, Z. Xu, and B. M. Sadler, “Wireless ultraviolet network models and performance in noncoplanar geometry,” in IEEE Globecom 2010 Workshop on Optical Wireless Communications (IEEE, 2010), pp. 1037–1041.
  16. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34(15), 2765–2773 (1995).
    [CrossRef] [PubMed]
  17. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17(12), 1911–1922 (1978).
    [CrossRef] [PubMed]

2011

2010

2009

2008

1995

1991

1979

1978

Bucholtz, A.

Chang, S.

Chen, G.

Ding, H.

H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wirel. Commun. Netw. 2010(1), 598572 (2010).
[CrossRef]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

G. Chen, Z. Xu, H. Ding, and B. M. Sadler, “Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications,” Opt. Express 17(5), 3929–3940 (2009).
[CrossRef] [PubMed]

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33(16), 1860–1862 (2008).
[CrossRef] [PubMed]

Drost, R. J.

Elshimy, M. A.

Guo, H.

Hranilovic, S.

Jia, H.

Lin, J.

Luettgen, M. R.

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

Moore, T. J.

Reilly, D. M.

Sadler, B. M.

Shapiro, J. H.

Tan, J.

Wang, L.

Wang, X.

Warde, C.

Wu, J.

Xiao, H.

Xu, Z.

Yang, J.

Yin, H.

Zachor, A. S.

Zhang, H.

Zuo, Y.

Appl. Opt.

EURASIP J. Wirel. Commun. Netw.

H. Ding, Z. Xu, and B. M. Sadler, “A path loss model for non-line-of-sight ultraviolet multiple scattering channels,” EURASIP J. Wirel. Commun. Netw. 2010(1), 598572 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Comm. 27(9), 1535–1544 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

L. Wang, Y. Li, Z. Xu, and B. M. Sadler, “Wireless ultraviolet network models and performance in noncoplanar geometry,” in IEEE Globecom 2010 Workshop on Optical Wireless Communications (IEEE, 2010), pp. 1037–1041.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

NLOS UV single-scatter propagation in noncoplanar geometry.

Fig. 2
Fig. 2

Example of limits on the azimuth angle ϕ.

Fig. 3
Fig. 3

Example of limits on the radial distance r.

Fig. 4
Fig. 4

Cases of intersection between L and C r when the x axis is outside C r .

Fig. 5
Fig. 5

Cases of intersection between L and C r when the x axis is inside C r .

Fig. 6
Fig. 6

Simulation results on the path loss of NLOS UV channels.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

δ E r = E t A r k s P(cos θ s )cosζ 4π Ω t r 2 r 2 e k e (r+ r ) δV,
E r = E t A r k s 4π Ω t θ min θ max ϕ min ϕ max r min r max P(cos θ s )cosζsinθ r 2 e k e (r+ r ) δθδϕδr ,
r = d 2 + r 2 2drsinθcosϕ ,
cos θ s = dsinθcosϕr r ,
cosζ= r[ sin θ r cosθcos θ r sinθcos(ϕ+ ϕ r ) ]+dcos θ r cos ϕ r r .
θ min =max[ 0,π/2 ( θ t + α t ) ],
θ max =min[ π,π/2 ( θ t α t ) ].
z=cosθ x 2 + y 2 + z 2 .
xcos θ t +zsin θ t =cos α t x 2 + y 2 + z 2 .
x E = z 0 cos θ t ( cos α t cosθ sin θ t ).
ϕ min 0 = ϕ max 0 ={ arctan( y E / x E ), R θ | x E | π, R θ <| x E |or θ t =π/2 .
[ ϕ min , ϕ max ]=[ ϕ min 0 + ϕ t , ϕ max 0 + ϕ t ].
( cos 2 α r cos 2 ϕ r cos 2 θ r ) (xd) 2 +sin(2 ϕ r ) cos 2 θ r (xd)y +( cos 2 α r sin 2 ϕ r cos 2 θ r ) y 2 +sin(2 θ r )cos ϕ r (xd)z sin(2 θ r )sin ϕ r yz+( cos 2 α r sin 2 θ r ) z 2 =0.
xcos θ r cos ϕ r ycos θ r sin ϕ r zsin θ r dcos θ r cos ϕ r .
a r 2 +br+c=0,
a= cos 2 α r [ sin θ r cosθcos θ r sinθcos(ϕ+ ϕ r ) ] 2 ,
b=2dsinθ[ cos 2 θ r cos ϕ r cos(ϕ+ ϕ r ) cos 2 α r cosϕ ] dcos ϕ r sin(2 θ r )cosθ,
c= d 2 ( cos 2 α r cos 2 ϕ r cos 2 θ r ).
r[ cos θ r sinθcos(ϕ+ ϕ r )sin θ r cosθ ]dcos θ r cos ϕ r .
{ r>0, cosζ0.
[ r min , r max ]={ [ r 0 ,+), r 0 >0 [ r 2 ,+), r 1 <0and r 2 >0 [ r 1 , r 2 ], r 1 >0 ,otherwise .
[ r min , r max ]={ [0, r 0 ], r 0 >0 [0, r 1 ], r 1 >0 [0, r 2 ], r 1 0and r 2 >0 [0,+),otherwise .
[ r min , r max ]={ [ r 2 ,+), r 1 0 ,otherwise .
P R (cos θ s )= 3[ 1+3γ+(1γ) cos 2 θ s ] 4(1+2γ) ,
P M (cos θ s )=(1 g 2 )[ 1 (1+ g 2 2gcos θ s ) 3/2 +f 0.5(3 cos 2 θ s 1) (1+ g 2 ) 3/2 ],
P(cos θ s )= k s R k s P R (cos θ s )+ k s M k s P M (cos θ s ),

Metrics