Abstract

Ultra-long-haul transmission at distances greater than 10,000 km is investigated for 112 Gb/s PM-QPSK signals using span lengths of 75 km and 100 km and all-Raman amplification. Two different ultra-low loss and large effective area optical fibers are studied. We demonstrate a reach length of 10,200 km for a 40 channel system using a fiber with effective area 112 μm2 with 100 km spans, and a reach length of 13,288 km for a system with 75 km spans using a fiber with effective area of 134 μm2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100-Gbit/s transmission over 9000km using erbium-doped fibre repeaters only,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.7.C.3.
  2. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, E. Dutisseuil, J. Renaudier, M. Bigot-Astruc, L. Provost, S. Richard, P. Sillard, S. Bigo, and G. Charlet, “Transmission of 96x100Gb/s with 23% super-FEC overhead over 11,680km, using optical spectral engineering,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), paper OMR2.
  3. J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2010), paper PDPB10.
  4. J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency),” in Proceedings of European Conf. Opt. Commun. (2010), paper PD2_1.
  5. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 x 111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6,248 km using SNR maximized second-order DRA in the extended L-band,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2009), paper PDPB5.
  6. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-erbium amplification and coherent detection,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2009), paper PDPB6.
  7. M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” in Proceedings of European Conf. Opt. Commun. (2009), paper PD2.5.
  8. J. D. Downie, J. E. Hurley, J. Cartledge, S. R. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK signals over 7200 km of optical fiber with very large effective area and ultra-low loss in 100 km spans with EDFAs only,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), paper OMI6.
  9. J. D. Downie, J. Hurley, J. Cartledge, S. Bickham, and S. Mishra, “112 Gb/s PM-QPSK transmission up to 6000 km with 200 km amplifier spacing and a hybrid fiber span configuration,” Opt. Express 19(26), B96–B101 (2011).
    [CrossRef] [PubMed]
  10. J. D. Downie, “112 Gb/s PM-QPSK transmission systems with reach lengths enabled by optical fibers with ultra-low loss and very large effective area,” in Proc. SPIE 8284 (SPIE, Bellingham, WA, 2012), paper 828403.
  11. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
    [CrossRef]
  12. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  13. J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Sig. Proc. 31, 459–472 (1983).
  14. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  15. M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
    [CrossRef]
  16. M. Z. Tao, L. Li, A. Isomura, T. Hoshida, and J. C. Rasmussen, “Multiplier-free phase recovery for optical coherent receivers,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2008), paper OWT2.

2011 (1)

2008 (2)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

1998 (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

1983 (1)

J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Sig. Proc. 31, 459–472 (1983).

Agee, B. G.

J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Sig. Proc. 31, 459–472 (1983).

Bickham, S.

Cartledge, J.

Downie, J. D.

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Hurley, J.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Mengali, U.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

Mishra, S.

Morelli, M.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

Savory, S. J.

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Treichler, J. R.

J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Sig. Proc. 31, 459–472 (1983).

Eur. Trans. Telecommun. (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. 9(2), 103–116 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

IEEE Trans. Acoust., Speech, Sig. Proc. (1)

J. R. Treichler and B. G. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust., Speech, Sig. Proc. 31, 459–472 (1983).

Opt. Express (2)

Other (11)

H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

M. Z. Tao, L. Li, A. Isomura, T. Hoshida, and J. C. Rasmussen, “Multiplier-free phase recovery for optical coherent receivers,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2008), paper OWT2.

M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80x100-Gbit/s transmission over 9000km using erbium-doped fibre repeaters only,” in Proceedings of European Conf. Opt. Commun. (2010), paper We.7.C.3.

M. Salsi, C. Koebele, P. Tran, H. Mardoyan, E. Dutisseuil, J. Renaudier, M. Bigot-Astruc, L. Provost, S. Richard, P. Sillard, S. Bigo, and G. Charlet, “Transmission of 96x100Gb/s with 23% super-FEC overhead over 11,680km, using optical spectral engineering,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), paper OMR2.

J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2010), paper PDPB10.

J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency),” in Proceedings of European Conf. Opt. Commun. (2010), paper PD2_1.

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 x 111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6,248 km using SNR maximized second-order DRA in the extended L-band,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2009), paper PDPB5.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-erbium amplification and coherent detection,” Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2009), paper PDPB6.

M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” in Proceedings of European Conf. Opt. Commun. (2009), paper PD2.5.

J. D. Downie, J. E. Hurley, J. Cartledge, S. R. Bickham, and S. Mishra, “Transmission of 112 Gb/s PM-QPSK signals over 7200 km of optical fiber with very large effective area and ultra-low loss in 100 km spans with EDFAs only,” in Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), paper OMI6.

J. D. Downie, “112 Gb/s PM-QPSK transmission systems with reach lengths enabled by optical fibers with ultra-low loss and very large effective area,” in Proc. SPIE 8284 (SPIE, Bellingham, WA, 2012), paper 828403.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental set-up of transmission system with re-circulating loop containing three 100 km spans of fiber or four 75.5 km spans of fiber.

Fig. 2
Fig. 2

Measured BER vs. power per channel for 1550.92 nm channel in Vascade EX2000 and Vascade EX3000 fiber systems.

Fig. 3
Fig. 3

(a) 20log(Q) values of 1550.92 nm channel vs. distance, (b) 20log(Q) values vs. OSNR for optimal channel launch power for both systems.

Fig. 4
Fig. 4

(a) 20log(Q) and OSNR values for EX2000 fiber system at 10,200 km, (b) 20log(Q) and OSNR values for EX30000 fiber system at 13,288 km.

Fig. 5
Fig. 5

Raman gain spectra for each span of the two systems.

Fig. 6
Fig. 6

(a) Spectrum of Vascade EX2000 fiber system at 10,200 km, (b) Spectrum of Vascade EX30000 fiber system at 13,288 km.

Metrics