Abstract

In addition to linear compensation of fiber channel impairments, coherent receivers also provide colorless selection of any desired data channel within multitude of incident wavelengths, without the need of a channel selecting filter. In this paper, we investigate the design requirements for colorless reception using a coherent balanced receiver, considering both the optical front end (OFE) and the transimpedance amplifier (TIA). We develop analytical models to predict the system performance as a function of receiver design parameters and show good agreement against numerical simulations. At low input signal power, an optimum local oscillator (LO) power is shown to exist where the thermal noise is balanced with the residual LO-RIN beat noise. At high input signal power, we show the dominant noise effect is the residual self-beat noise from the out of band (OOB) channels, which scales not only with the number of OOB channels and the common mode rejection ratio (CMRR) of the OFE, but also depends on the link residual chromatic dispersion (CD) and the orientation of the polarization tributaries relative to the receiver. This residual self-beat noise from OOB channels sets the lower bound for the LO power. We also investigate the limitations imposed by overload in the TIA, showing analytically that the DC current scales only with the number of OOB channels, while the differential AC current scales only with the link residual CD, which induces high peak-to-average power ratio (PAPR). Both DC and AC currents at the input to the TIA set the upper bounds for the LO power. Considering both the OFE noise limit and the TIA overload limit, we show that the receiver operating range is notably narrowed for dispersion unmanaged links, as compared to dispersion managed links.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications, V, I. Kaminow, T. Li and A. E. Willner, eds., (Elsevier, 2008) Vol. B. Chap. 8, 293–344.
  2. E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
    [CrossRef]
  3. L. Kazovsky, “Multichannel coherent optical communications systems,” J. Lightwave Technol. 5(8), 1095–1102 (1987).
    [CrossRef]
  4. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  5. M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
    [CrossRef]
  6. L. E. Nelson, S. L. Woodward, S. Foo, M. Moyer, D. J. S. Beckett, M. O’Sullivan, and P. D. Magill, “Detection of a single 40 Gb/s polarization-multiplexed QPSK channel with a real-time intradyne receiver in the presence of multiple coincident WDM channels,” J. Lightwave Technol. 28(20), 2933–2943 (2010).
    [CrossRef]
  7. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” in Proceedings of ECOC, postdeadline paper, Th.13.b.2, (2011).
  8. C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
    [CrossRef]
  9. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express 17(5), 3659–3672 (2009).
    [CrossRef] [PubMed]
  10. B. Zhang, C. Malouin, and T. J. Schmidt, “Design of coherent receiver optical front end for unamplified applications,” Opt. Express 20(3), 3225–3234 (2012).
    [CrossRef] [PubMed]
  11. OIF IA # OIF-DPC-RX-01.0, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” April 16, 2010.
  12. B. Razavi, Design of Integrated Circuits for Optical Communication Systems (McGraw-Hill, 2003).

2012 (1)

2011 (2)

M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, R. Saunders, G. Nicholl, M. Nowell, and F. Forghieri, “Real-time single-carrier coherent 100 Gb/s PM-QPSK field trial,” J. Lightwave Technol. 29(4), 417–425 (2011).
[CrossRef]

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

1987 (1)

L. Kazovsky, “Multichannel coherent optical communications systems,” J. Lightwave Technol. 5(8), 1095–1102 (1987).
[CrossRef]

1986 (1)

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Bachus, E.-J.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Beckett, D. J. S.

Birk, M.

Braun, R.-P.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Buhl, L. L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Caspar, C.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Curto, R.

Doerr, C. R.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Foisel, H.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Foo, S.

Forghieri, F.

Gerard, P.

Glavanovic, M.

Grossmann, E.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Heimes, K.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Houtsma, V.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Hu, T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Ibragimov, E.

Kazovsky, L.

L. Kazovsky, “Multichannel coherent optical communications systems,” J. Lightwave Technol. 5(8), 1095–1102 (1987).
[CrossRef]

Khatana, S.

Lamping, H.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Lofland, R.

Magill, P.

Magill, P. D.

Malouin, C.

Marcoccia, R.

Morin, M.

Moyer, M.

Neilson, D. T.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Nelson, L. E.

Nicholl, G.

Nowell, M.

O’Sullivan, M.

Painchaud, Y.

Poulin, M.

Roberts, K.

Sauer, N. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Saunders, R.

Schmidt, T. J.

Strebel, B.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Sun, H.

Têtu, M.

Weimann, N.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Westphal, F.-J.

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

Winzer, P. J.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Woodward, S. L.

Wu, K. T.

Zhang, B.

Zhang, L.

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

Zhou, X.

Electron. Lett. (1)

E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossmann, H. Foisel, K. Heimes, H. Lamping, B. Strebel, and F.-J. Westphal, “Ten-channel coherent optical fibre transmission,” Electron. Lett. 22(19), 1002–1003 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Doerr, L. Zhang, P. J. Winzer, N. Weimann, V. Houtsma, T. Hu, N. J. Sauer, L. L. Buhl, D. T. Neilson, S. Chandrasekhar, and Y. K. Chen, “Monolithic InP dual-polarization and dual-quadrature coherent receiver,” IEEE Photon. Technol. Lett. 23(11), 694–696 (2011).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (3)

Other (4)

C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” in Proceedings of ECOC, postdeadline paper, Th.13.b.2, (2011).

OIF IA # OIF-DPC-RX-01.0, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” April 16, 2010.

B. Razavi, Design of Integrated Circuits for Optical Communication Systems (McGraw-Hill, 2003).

M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical Fiber Telecommunications, V, I. Kaminow, T. Li and A. E. Willner, eds., (Elsevier, 2008) Vol. B. Chap. 8, 293–344.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of an integrated optical coherent receiver for colorless reception. LO: local oscillator; PBS: polarization beam splitter; OFE: optical front end, which contains two 90 degree hybrid mixers and four sets of balanced photodiodes. TIA: transimpedance amplifier. The input Rx signal carries N number of out of band (OOB) channels, with residual CD in the range of 0ps/nm to 50ns/nm, and varying orientation of the two polarization tributaries. The input dynamic range should be supported from −20dBm to 0dBm per channel.

Fig. 2
Fig. 2

(a) CMRR as a function of frequency for various P/N skew levels and P/N power imbalance values. The normalized one-sided 32-Gbaud PM-QPSK optical spectrum is also overlaid. (b) Effective CMRR value based on different combinations of P/N skew values and P/N power imbalance values. The effective CMRR is extracted from (a) at around 8 to 10 GHz frequency content.

Fig. 3
Fig. 3

Key parameters with brief description used in the numerical simulation.

Fig. 4
Fig. 4

(a) Numerical and analytical simulations of Q2 Penalty as a function of LO power for two different P/N skew values and single channel reception. The numerical simulation and analytical equations are seen to be in good agreement. (b) Numerical and analytical simulations of Q2 penalty versus number of OOB channels.

Fig. 5
Fig. 5

(a) Numerical and analytical simulations of Q2 penalty as a function of number of OOB channels for various LO powers. (b) Numerical and analytical simulations of Q2 penalty as a function of OOB channel number for various P/N skew values. The numerical simulation and analytical equations are seen to be in good agreement.

Fig. 6
Fig. 6

(a) Numerical and analytical simulations of Q2 Penalty as a function of input signal dynamic range for different number of OOB channels. (b) Numerical and analytical simulations of Q2 Penalty as a function of input signal dynamic range with 41 OOB channels for different LO power and P/N skews. It is shown that increasing the LO power only enhances the high end of the dynamic range, while increasing the CMRR enhances both sides of the dynamic range. The numerical simulation and analytical equations are seen to be in good agreement.

Fig. 7
Fig. 7

(a) Numerical and analytical simulations of Q2 Penalty as a function of input signal dynamic range with 11 OOB channels for various conditions of residual CD and polarization orientation. It is shown that with dispersion compensated links (CD = 0ps/nm), the high-end input dynamic range can be affected by the polarization orientation of OOB channels (b) Analytical predictions of Q2 Penalty as a function of input signal dynamic range with 81 OOB channels for dispersion managed (CD = 0ps/nm) and unmanaged (CD = 50ns/nm) links. It is shown that dispersion managed links with random polarization can achieve an input dynamic range from −20dBm to 0dBm.

Fig. 8
Fig. 8

(a) Numerical results of DC current at the input of the TIA versus chromatic dispersion for different number of channels ranging from 1 to 81. It is shown that DC current scales nonlinearity with the number of channels, and is not dependent on the amount of CD. (b) Numerical results of AC peak-to-peak differential (ppd) current at the input of the TIA versus chromatic dispersion for single channel and 81 channels reception. It is shown that ACppd current rises rapidly in the 0 to 1ns/nm range and quickly saturates when the CD is beyond 1ns/nm. On the other hand, the AC current is largely independent on the number of OOB channels.

Fig. 9
Fig. 9

Analytical prediction of the operating bounds of full C-band (81 channels) colorless reception, considering both OFE noise limits and TIA nonlinear distortion limits, for: (a) Dispersion unmanaged (CD = 50ns/nm) links. (b) Dispersion managed (CD = 0ps/nm) links. It is shown that dispersion unmanaged links have significantly narrower operating bounds due to the higher peak-to-average power ratios caused by the accumulated CD, as well as the TIA differential AC current overload limit.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

CMRR(f)= | α 2 e j2πfτ α 2 +1 | 2
I p (t)=|( E SIG,s (t)+ E ASE,s )+ i=1 N ( E SIG,i (t)+ E ASE,i )+ ( E LO + E LOIN (t)) | 2 + i TIA + i shot
I n (t)=α|( E SIG,s (t+τ)+ E ASE,s )+ i=1 N ( E SIG,i (t+τ)+ E ASE,i )+ ( E LO + E LOIN (t+τ)) | 2 + i TIA + i shot
SN R OFEout = P LO * P SIG,s P LO * P ASE,s + σ thermal 2 + σ shot 2 +CMRR*[ P LO * P LOIN + i=1 N (| P ASE,i | 2 + P ASE,i * P SIG,i +β| P SIG,i | 2 ]
SIR= P LO * P SIG,s σ thermal 2 + σ shot 2 +CMRR*[ P LO * P LOIN + i=1 N (| P ASE,i | 2 + P ASE,i * P SIG,i +β| P SIG,i | 2 ]
SIR= P LO * P SIG,s σ thermal 2 + σ shot 2 +CMRR* P LO * P LOIN
SIR= P LO CMRR*β*N* P SIG,i
SIR=LSRCMRR10*log(β*N)
I DC = 10 P LO Loss 10 + 10 [ P SIG ¯ +10*log10(N)Loss] 10
I AC ppd = 10 6dB+3dB+ 1 2 *[( P SIG ¯ +PAPR)+ P LO ]Loss 10

Metrics