Abstract

Recently, an increasing interest has been put on spectrally-efficient multi-carrier superchannels for beyond 100G. Apart from orthogonal frequency-division multiplexing (OFDM) and Nyquist wavelength-division multiplexing (WDM), another low-complexity WDM approach based on transmitter-side pre-filtering and receiver-side duobinary shaping is proposed to build up multi-carrier superchannels. This approach is referred to as receiver-side duobinary-shaped WDM (RS-DBS-WDM). Generation and transmission of a 1.232-Tbit/s 11-carrier superchannel is experimentally demonstrated. The superchannel signal can be well fit inside the passband of multiple 300-GHz reconfigurable optical add and drop multiplexers (ROADMs). In the superchannel scenario, the proposed RS-DBS-WDM is qualitatively compared with OFDM and Nyquist-WDM in terms of implementation complexity. In sum, the proposed RS-DBS-WDM approach features high transceiver analog-bandwidth efficiency, high spectral-efficiency, the absence of specific spectral manipulation, compatibility with conventional WDM technologies and coherent detection algorithms, and comparable implementation penalty.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [CrossRef]
  2. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  3. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
    [CrossRef]
  4. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2 Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” presented at the ECOC 2009, Vienna, Austria, Sep. 20–24, 2009, Paper PD2.6.
  5. J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation of 112 coherent multi-carriers and transmission of 10 Tb/s (112x100Gb/s) single optical OFDM superchannel over 640 km SMF,” in Proc. OFC2011, Mar. 2011, Paper PDPA6.
  6. J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, and N. Chi, “Generation of coherent and frequency-locked multi-carriers using cascaded phase modulators for 10Tb/s optical transmission,” J. Lightwave Technol. 30(4), 458–465 (2012).
    [CrossRef]
  7. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [CrossRef]
  8. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
    [CrossRef] [PubMed]
  9. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
    [CrossRef]
  10. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
    [CrossRef]
  11. G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. L. Porta, C. Lezzi, S. Savory, and S. Abrate, “Investigation of the impact of ultra-narrow carrier spacing on the transmission of a 10-carrier 1Tb/s superchannel,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThD3.
  12. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.
  13. J. G. Proakis, Digital Communications, 4th ed. (New York McGraw-Hill, 2001).
  14. G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [CrossRef]
  15. H. Kobayashi, “Correlative level coding and maximum likelihood decoding,” IEEE Trans. Inf. Theory 17(5), 586–594 (1971).
    [CrossRef]
  16. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, and P. A. Andrekson, “Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600km-SMF link without optical dispersion compensation,” presented in OFC 2006, Anaheim, CA, March 2006, paper OWB7.
  17. N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
    [CrossRef]
  18. J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low-complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” presented in OFC 2012, Los Angeles, CA, March 2012, Paper OM3H.2.
  19. I. Lyubomirsky, “Quadrature duobinary modulation for 100G transmission beyond the Nyquist limit,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThM4.
  20. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol. 28(1), 91–96 (2010).
    [CrossRef]
  21. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
    [CrossRef]
  22. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. -S. Tsai, R. Malendevich, M. Missey, K. -T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Proc. OFC2011, Mar. 2011, Paper OML7.
  23. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  24. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol. 30(4), 651–657 (2012).
    [CrossRef]
  25. K. Horikoshi, T. Kobayashi, S. Yamanaka, E. Yamazaki, A. Sano, E. Yoshida, and Y. Miyamoto, “Spectrum-narrowing tolerant 171-Gbit/s PDM-16QAM transmission over 1,200 km using maximum likelihood sequence estimation,” in Proc. ECOC 2011, Paper We.10.P1.73.
  26. M. Selmi, Y. Jaouën, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC 2009, Sep. 2009, Paper P3.08.
  27. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  28. V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm. 7(6), 989–995 (1989).
    [CrossRef]
  29. S. Olcer, “Reduced-state sequence detection of multilevel partial-response signals,” IEEE Trans. Commun. 40(1), 3–6 (1992).
    [CrossRef]

2012 (4)

2011 (3)

2010 (4)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[CrossRef]

I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol. 28(1), 91–96 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

2009 (3)

1992 (1)

S. Olcer, “Reduced-state sequence detection of multilevel partial-response signals,” IEEE Trans. Commun. 40(1), 3–6 (1992).
[CrossRef]

1989 (1)

V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm. 7(6), 989–995 (1989).
[CrossRef]

1972 (1)

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

1971 (1)

H. Kobayashi, “Correlative level coding and maximum likelihood decoding,” IEEE Trans. Inf. Theory 17(5), 586–594 (1971).
[CrossRef]

Alic, N.

Andrekson, P. A.

N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[CrossRef]

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

Baeuerle, B.

Becker, J.

Ben-Ezra, S.

Bergano, N. S.

Borel, P. I.

Bosco, G.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Cai, J.-X.

Caponio, N. P.

Carena, A.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Carlson, K.

Chandrasekhar, S.

Chen, S.

Chi, N.

Chien, H.-C.

Cigliutti, R.

Curri, V.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Davidson, C. R.

Dong, Z.

Dreschmann, M.

Eriksson, T.

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

Eyuboglu, V. M.

V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm. 7(6), 989–995 (1989).
[CrossRef]

Forghieri, F.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Forney, G. D.

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

Foursa, D. G.

Freude, W.

Gnauck, A. H.

Hillerkuss, D.

Hoshida, T.

Huebner, M.

Isaac, R.

Ishihara, K.

Karlsson, M.

N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[CrossRef]

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

Kobayashi, H.

H. Kobayashi, “Correlative level coding and maximum likelihood decoding,” IEEE Trans. Inf. Theory 17(5), 586–594 (1971).
[CrossRef]

Kobayashi, T.

Koos, C.

Kudo, R.

Leuthold, J.

Li, J.

J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
[CrossRef]

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

Liu, X.

Lucero, A.

Ludwig, A.

Lyubomirsky, I.

Ma, Y.

Magill, P.

Masuda, H.

Meyer, J.

Meyer, M.

Milenkovic, O.

Miyamoto, Y.

Mohs, G.

Nebendahl, B.

Nelson, L. E.

Olcer, S.

S. Olcer, “Reduced-state sequence detection of multilevel partial-response signals,” IEEE Trans. Commun. 40(1), 3–6 (1992).
[CrossRef]

Patterson, W. W.

Peckham, D. W.

Pilipetskii, A. N.

Poggiolini, P.

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

Qureshi, S. U.

V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm. 7(6), 989–995 (1989).
[CrossRef]

Radic, S.

Rasmussen, J. C.

Sano, A.

Sasaki, T.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

Schmogrow, R.

Shieh, W.

Sinkin, O. V.

Skold, M.

Takatori, Y.

Tang, Y.

Tao, Z.

Tipsuwannakul, E.

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

Torrengo, E.

Winter, M.

Winzer, P. J.

Wolf, S.

Xiao, X.

Yamada, E.

Yamamoto, Y.

Yamazaki, E.

Yan, W.

Yang, Q.

Yoshida, E.

Yu, J.

Zhang, H.

Zhang, J.

Zhou, X.

Zhu, B.

IEEE J. Sel. Areas Comm. (1)

V. M. Eyuboglu and S. U. Qureshi, “Reduced-state sequence estimation for coded modulation on intersymbol interference channels,” IEEE J. Sel. Areas Comm. 7(6), 989–995 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

S. Olcer, “Reduced-state sequence detection of multilevel partial-response signals,” IEEE Trans. Commun. 40(1), 3–6 (1992).
[CrossRef]

IEEE Trans. Inf. Theory (2)

G. D. Forney., “Maximum likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

H. Kobayashi, “Correlative level coding and maximum likelihood decoding,” IEEE Trans. Inf. Theory 17(5), 586–594 (1971).
[CrossRef]

J. Lightwave Technol. (10)

J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” to be published in J. Lightwave Technol.

N. Alic, M. Karlsson, M. Skold, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[CrossRef]

I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol. 28(1), 91–96 (2010).
[CrossRef]

J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
[CrossRef]

X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “PDM-Nyquist-32QAM for 450-Gb/s per-channel WDM transmission on the 50 GHz ITU-T grid,” J. Lightwave Technol. 30(4), 553–559 (2012).
[CrossRef]

R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9×138Gb/s prefiltered PM-8QAM signals over 4000 km of pure silica-core fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011).
[CrossRef]

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[CrossRef]

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
[CrossRef]

J. Yu, Z. Dong, J. Zhang, X. Xiao, H.-C. Chien, and N. Chi, “Generation of coherent and frequency-locked multi-carriers using cascaded phase modulators for 10Tb/s optical transmission,” J. Lightwave Technol. 30(4), 458–465 (2012).
[CrossRef]

J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol. 30(4), 651–657 (2012).
[CrossRef]

Opt. Express (3)

Other (10)

G. Gavioli, E. Torrengo, G. Bosco, A. Carena, V. Curri, V. Miot, P. Poggiolini, M. Belmonte, F. Forghieri, C. Muzio, S. Piciaccia, A. Brinciotti, A. L. Porta, C. Lezzi, S. Savory, and S. Abrate, “Investigation of the impact of ultra-narrow carrier spacing on the transmission of a 10-carrier 1Tb/s superchannel,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThD3.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2 Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” presented at the ECOC 2009, Vienna, Austria, Sep. 20–24, 2009, Paper PD2.6.

J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation of 112 coherent multi-carriers and transmission of 10 Tb/s (112x100Gb/s) single optical OFDM superchannel over 640 km SMF,” in Proc. OFC2011, Mar. 2011, Paper PDPA6.

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. -S. Tsai, R. Malendevich, M. Missey, K. -T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Proc. OFC2011, Mar. 2011, Paper OML7.

J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low-complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” presented in OFC 2012, Los Angeles, CA, March 2012, Paper OM3H.2.

I. Lyubomirsky, “Quadrature duobinary modulation for 100G transmission beyond the Nyquist limit,” in Proc. OFC 2010, San Diego, CA, March 2010, Paper OThM4.

J. G. Proakis, Digital Communications, 4th ed. (New York McGraw-Hill, 2001).

N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, and P. A. Andrekson, “Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600km-SMF link without optical dispersion compensation,” presented in OFC 2006, Anaheim, CA, March 2006, paper OWB7.

K. Horikoshi, T. Kobayashi, S. Yamanaka, E. Yamazaki, A. Sano, E. Yoshida, and Y. Miyamoto, “Spectrum-narrowing tolerant 171-Gbit/s PDM-16QAM transmission over 1,200 km using maximum likelihood sequence estimation,” in Proc. ECOC 2011, Paper We.10.P1.73.

M. Selmi, Y. Jaouën, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in Proc. ECOC 2009, Sep. 2009, Paper P3.08.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic setup of a RS-DBS-WDM superchannel system.

Fig. 2
Fig. 2

Setup and optical spectra in the 1.232 Tbit/s PM-QPSK RS-DBS-WDM superchannel experiment.

Fig. 3
Fig. 3

28 Gbaud QPSK spectrum and the transfer function of the used 25/50GHz optical interleaver.

Fig. 4
Fig. 4

DSP flow chart in each individual digital coherent receiver for each carrier.

Fig. 5
Fig. 5

B2B performance as a function of OSNR for different cases. IL: interleaver.

Fig. 6
Fig. 6

Performance of 1.232 Tbit/s superchannel transmissions over 640 km SSMF as a function of launched power.

Fig. 7
Fig. 7

The BERs of all the 11 carriers after 640 km SSMF transmission at 10 dBm launched total power.

Fig. 8
Fig. 8

The optical spectrum of the generated 1.232 Tbit/s RS-DBS-WDM superchannel and the transfer functions of a single 300 GHz WSS and 20 concatenated 300 GHz WSSs.

Fig. 9
Fig. 9

The Q-penalties of 1st and 11th carriers as a function of the bandwidth of WSS2.

Fig. 10
Fig. 10

(a) duobinary-shaped channel model with AWGN; (b) Trellis for duobinary-shaped 2PAM.

Tables (1)

Tables Icon

Table 1 Comparison of Different Solutions to Building up Superchannels (H: high; M: medium; L: Low)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

DM( x k )= min x k1 { DM( x k1 )+ΔDM( x k1 , x k ) }= min x k1 { DM( x k1 )+ ( z k y k ) 2 } ,
ΔDM( x k1 , x k )= ( z k y k ) 2 .
ΔDM( x k1 , x k )=2 y k z k + y k 2 .
ΔDM( x k1 , x k )= 1 2 y k z k + ( 1 2 y k ) 2 .
ΔDM( x k1 , x k )={ z k +1 y k =2 0 y k =0 z k +1 y k =2 .

Metrics