Abstract

Automated protocols have been developed to characterize time series data in terms of stability. These techniques are applied to the output power time series of an optically injected vertical cavity surface emitting laser (VCSEL) subject to varying injection strength and optical frequency detuning between master and slave lasers. Dynamic maps, generated from high resolution, computer controlled experiments, identify regions of dynamic instability in the parameter space.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
    [CrossRef]
  2. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, Berlin, 2006).
  3. J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
    [CrossRef] [PubMed]
  4. E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
    [CrossRef]
  5. V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
    [CrossRef]
  6. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
    [CrossRef]
  7. T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
    [CrossRef]
  8. T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
    [CrossRef]
  9. J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
    [CrossRef]
  10. K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
    [CrossRef]
  11. K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
    [CrossRef]
  12. Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
    [CrossRef]
  13. I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
    [CrossRef]
  14. K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
    [CrossRef]
  15. A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
    [CrossRef]
  16. L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
    [CrossRef]
  17. A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
    [CrossRef]
  18. I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
    [CrossRef] [PubMed]
  19. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
    [CrossRef] [PubMed]
  20. D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31(1), 20–22 (2006).
    [CrossRef] [PubMed]
  21. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18(16), 16955–16972 (2010).
    [CrossRef] [PubMed]
  22. S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
    [CrossRef]
  23. S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
    [CrossRef]
  24. S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
    [CrossRef]
  25. J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
    [CrossRef] [PubMed]
  26. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [CrossRef]
  27. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
    [CrossRef] [PubMed]
  28. J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38(2), 185–192 (2002).
    [CrossRef]
  29. S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B. 4(2), 149–154 (2002).
    [CrossRef]
  30. S. Eriksson and A. M. Lindberg, “Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection,” Opt. Lett. 26(3), 142–144 (2001).
    [CrossRef] [PubMed]
  31. T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
    [CrossRef]
  32. C. Bonatto and J. A. C. Gallas, “Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 055204 (2007).
    [CrossRef] [PubMed]
  33. V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
    [CrossRef]
  34. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
    [CrossRef]
  35. M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers,” Opt. Lett. 30(21), 2903–2905 (2005).
    [CrossRef] [PubMed]
  36. K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Analysis and characterisation of experimental real-time series of a semiconductor laser under optical injection,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC) (Munich, Germany, 2011).
  37. S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
    [CrossRef] [PubMed]
  38. B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
    [CrossRef]
  39. L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
    [CrossRef]
  40. B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
    [CrossRef] [PubMed]
  41. D. M. Kane and J. P. Toomey, “Variable pulse repetition frequency output from an optically injected solid state laser,” Opt. Express 19(5), 4692–4702 (2011).
    [CrossRef] [PubMed]
  42. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, Dordrecht, 1988).

2011 (4)

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

D. M. Kane and J. P. Toomey, “Variable pulse repetition frequency output from an optically injected solid state laser,” Opt. Express 19(5), 4692–4702 (2011).
[CrossRef] [PubMed]

2010 (4)

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18(16), 16955–16972 (2010).
[CrossRef] [PubMed]

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
[CrossRef]

2009 (4)

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
[CrossRef] [PubMed]

E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

2008 (2)

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
[CrossRef]

2007 (3)

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

C. Bonatto and J. A. C. Gallas, “Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 055204 (2007).
[CrossRef] [PubMed]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

2006 (6)

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31(1), 20–22 (2006).
[CrossRef] [PubMed]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
[CrossRef]

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

2005 (5)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[CrossRef]

M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers,” Opt. Lett. 30(21), 2903–2905 (2005).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

2003 (2)

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[CrossRef]

2002 (3)

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
[CrossRef] [PubMed]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38(2), 185–192 (2002).
[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B. 4(2), 149–154 (2002).
[CrossRef]

2001 (1)

1998 (1)

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

1993 (1)

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

1992 (1)

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Adams, M. J.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
[CrossRef]

Altes, J. B.

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

Amann, M. C.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Asom, M.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Baums, D.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Bonatto, C.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

C. Bonatto and J. A. C. Gallas, “Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 055204 (2007).
[CrossRef] [PubMed]

Buesa, J.

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

Chow, W. W.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

Chrostowski, L.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Dagenais, M.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Donati, S.

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

Elsässer, W.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Eriksson, S.

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B. 4(2), 149–154 (2002).
[CrossRef]

S. Eriksson and A. M. Lindberg, “Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection,” Opt. Lett. 26(3), 142–144 (2001).
[CrossRef] [PubMed]

Faraji, B.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Focht, M.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Fordell, T.

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

Gallas, J. A. C.

V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
[CrossRef]

C. Bonatto and J. A. C. Gallas, “Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 055204 (2007).
[CrossRef] [PubMed]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Gatare, I.

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

Gavrielides, A.

V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
[CrossRef]

Göbel, E. O.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Guth, G.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Han, W.-S.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Hegarty, S. P.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

Henneberger, F.

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

Henning, I. D.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
[CrossRef]

Hofmann, W.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

Hurtado, A.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
[CrossRef]

Huyet, G.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

Jeong, K. H.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Jiang, S.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Kane, D. M.

Kelleher, B.

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

Kim, K. H.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Kojima, K.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Kovanis, V.

V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
[CrossRef]

Koyama, F.

Krauskopf, B.

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
[CrossRef] [PubMed]

Kwon, O.-K.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Labukhin, D.

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Lau, E. K.

E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[CrossRef]

Lawrence, J. S.

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38(2), 185–192 (2002).
[CrossRef]

Lee, K.-H.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Lee, M. H.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Lee, M. W.

Lee, S. H.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

Leibenguth, R.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
[CrossRef] [PubMed]

Lindberg, A. M.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
[CrossRef] [PubMed]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B. 4(2), 149–154 (2002).
[CrossRef]

S. Eriksson and A. M. Lindberg, “Periodic oscillation within the chaotic region in a semiconductor laser subjected to external optical injection,” Opt. Lett. 26(3), 142–144 (2001).
[CrossRef] [PubMed]

Liu, J. M.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

Mirasso, C. R.

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Morgan, R.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Nizette, M.

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

Olejniczak, L.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

Pan, Z.

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Panajotov, K.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers,” Opt. Lett. 30(21), 2903–2905 (2005).
[CrossRef] [PubMed]

Panknin, P.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Park, M.-R.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Park, S.-J.

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Perez, T.

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

Pesquera, L.

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Quirce, A.

Radziunas, M.

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

Sacher, J.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

Schires, K.

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

Schneider, K.

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

Sciamanna, M.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

M. Sciamanna and K. Panajotov, “Two-mode injection locking in vertical-cavity surface-emitting lasers,” Opt. Lett. 30(21), 2903–2905 (2005).
[CrossRef] [PubMed]

Scire, A.

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

Shore, K. A.

J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18(16), 16955–16972 (2010).
[CrossRef] [PubMed]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

D. M. Kane, J. P. Toomey, M. W. Lee, and K. A. Shore, “Correlation dimension signature of wideband chaos synchronization of semiconductor lasers,” Opt. Lett. 31(1), 20–22 (2006).
[CrossRef] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Sieber, J.

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

Sorel, M.

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

Thienpont, H.

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

Toomey, J. P.

Valle, A.

Valling, S.

J. P. Toomey, D. M. Kane, S. Valling, and A. M. Lindberg, “Automated correlation dimension analysis of optically injected solid state lasers,” Opt. Express 17(9), 7592–7608 (2009).
[CrossRef] [PubMed]

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

Wieczorek, S.

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
[CrossRef] [PubMed]

Wolfrum, M.

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

Wong, L. H.

E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[CrossRef]

Wu, M. C.

E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[CrossRef]

Wunsche, H. J.

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

Yoo, B.-S.

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

AIP Advances (1)

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Comprehensive experimental analysis of nonlinear dynamics in an optically-injected semiconductor laser,” AIP Advances 1(3), 032131 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Asom, R. Leibenguth, G. Guth, and M. Focht, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63(22), 2999–3001 (1993).
[CrossRef]

Eur. Phys. J. D (1)

V. Kovanis, A. Gavrielides, and J. A. C. Gallas, “Labyrinth bifurcations in optically injected diode lasers,” Eur. Phys. J. D 58(2), 181–186 (2010).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. B. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42(2), 198–207 (2006).
[CrossRef]

J. S. Lawrence and D. M. Kane, “Nonlinear dynamics of a laser diode with optical feedback systems subject to modulation,” IEEE J. Quantum Electron. 38(2), 185–192 (2002).
[CrossRef]

V. Annovazzi-Lodi, A. Scire, M. Sorel, and S. Donati, “Dynamic behavior and locking of a semiconductor laser subjected to external injection,” IEEE J. Quantum Electron. 34(12), 2350–2357 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

E. K. Lau, L. H. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[CrossRef]

A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14(3), 911–917 (2008).
[CrossRef]

L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz bandwidth and 64 GHz resonance frequency in injection-locked 1.55µm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1200–1208 (2007).
[CrossRef]

A. Hurtado, D. Labukhin, I. D. Henning, and M. J. Adams, “Injection locking bandwidth in 1550-nm VCSELs subject to parallel and orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 585–593 (2009).
[CrossRef]

IEEE Photon. J. (1)

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Polarization and time-resolved dynamics of a 1550-nm VCSEL subject to orthogonally polarized optical injection,” IEEE Photon. J. 3(3), 555–563 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Perez, M. Radziunas, H. J. Wunsche, C. R. Mirasso, and F. Henneberger, “Synchronization properties of two coupled multisection semiconductor lasers emitting chaotic light,” IEEE Photon. Technol. Lett. 18(20), 2135–2137 (2006).
[CrossRef]

K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B.-S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5µm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20(10), 779–781 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. B. (1)

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B. 4(2), 149–154 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, “All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys. 45(1), L8–L10 (2006).
[CrossRef]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef] [PubMed]

Opt. Commun. (5)

S. Valling, B. Krauskopf, T. Fordell, and A. M. Lindberg, “Experimental bifurcation diagram of a solid state laser with optical injection,” Opt. Commun. 271(2), 532–542 (2007).
[CrossRef]

B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215(4-6), 367–379 (2003).
[CrossRef]

T. Fordell and A. M. Lindberg, “Numerical stability maps of an optically injected semiconductor laser,” Opt. Commun. 242(4-6), 613–622 (2004).
[CrossRef]

S. Valling, T. Fordell, and A. M. Lindberg, “Experimental and numerical intensity time series of an optically injected solid state laser,” Opt. Commun. 254(4-6), 282–289 (2005).
[CrossRef]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

I. Gatare, J. Buesa, H. Thienpont, K. Panajotov, and M. Sciamanna, “Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection,” Opt. Quantum Electron. 38(4-6), 429–443 (2006).
[CrossRef]

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[CrossRef]

Phys. Rev. A (3)

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992).
[CrossRef] [PubMed]

S. Valling, T. Fordell, and A. M. Lindberg, “Maps of the dynamics of an optically injected solid-state laser,” Phys. Rev. A 72(3), 033810 (2005).
[CrossRef]

L. Olejniczak, K. Panajotov, H. Thienpont, and M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82(2), 023807 (2010).
[CrossRef]

Phys. Rev. E (1)

B. Kelleher, C. Bonatto, G. Huyet, and S. P. Hegarty, “Excitability in optically injected semiconductor lasers: contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83(2), 026207 (2011).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

C. Bonatto and J. A. C. Gallas, “Accumulation horizons and period adding in optically injected semiconductor lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(5), 055204 (2007).
[CrossRef] [PubMed]

I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, “Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(2), 026218 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Wieczorek, B. Krauskopf, and D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88(6), 063901 (2002).
[CrossRef] [PubMed]

Quantum Semiclassical Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[CrossRef]

Other (3)

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos (Springer-Verlag, Berlin, 2006).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, Dordrecht, 1988).

K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Analysis and characterisation of experimental real-time series of a semiconductor laser under optical injection,” in Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC) (Munich, Germany, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Setup used for the study of orthogonally polarized injection in a 1550 nm VCSEL (reproduced from [11]).

Fig. 2
Fig. 2

Maps of the orthogonal polarization (a) average amplitude and (b) peak-to-peak amplitude when combined can produce a map of the (c) stable injection locked region, (d) identifies regions that display one or two polarization mode operation.

Fig. 3
Fig. 3

Orthogonal polarization intensity time series remaining stationary over the 100 ns trace. (a) P1 (K = −0.55 dB, Δf = + 2.37 GHz) and (c) P2 (K = −2.15 dB, Δf = + 9.10 GHz). Plots in (b) and (d) are the same graphs on a much shorter time scale. The inset maps show the location of the particular time series in the parameter space. For clarity, grey regions are included in the inset maps which represent dynamics with peak-to-peak-amplitudes greater than 0.02 V.

Fig. 4
Fig. 4

Some of the various dynamics (orthogonal polarization) that can be detected using this method; (a) Δf = + 4.86 GHz, K = −9.83 dB, (b) Δf = + 6.86 GHz, K = −8.37 dB, (c) Δf = + 4.36 GHz, K = −12.84 dB, (d) Δf = −2.87 GHz, K = −7.74 dB, (e) Δf = −1.62 GHz, K = −9.27 dB, (f) Δf = −0.87 GHz, K = −12.74 dB. The inset maps show the location of the particular time series in the parameter space. For clarity, grey regions are included in the inset maps which represent dynamics with peak-to-peak-amplitudes greater than 0.02 V.

Fig. 5
Fig. 5

Maps of the windowed peak to peak amplitude standard deviation for (a) orthogonal, and (b) parallel polarization. The grey region represents injection locked dynamics.

Fig. 6
Fig. 6

Map showing the regions where the unstable nonstationary dynamics occur in parallel polarization only (red), orthogonal polarization only (green) and both polarizations (blue).

Fig. 7
Fig. 7

(a) Time series of both orthogonal and parallel polarizations for Δf = + 6.86 GHz, K = −8.37 dB. (b) Expanded region showing the polarization switching (note that the parallel trace has been shifted by 2.18 ns so that the two time series are synchronized. This corrects for delays due to distances to detector and electrical components. Also, the amplitude of the parallel trace has been offset by + 0.03 V for clarity).

Fig. 8
Fig. 8

(a) Map of the standard deviation in time interval between local maxima as a percentage of the average time interval, and (b) map of the dominant frequency as determined by the average time interval (period) between local maxima. The grey region represents injection locked dynamics.

Fig. 9
Fig. 9

Sequence of time series (left) and phase portraits (right) showing the orthogonal polarization dynamics as it transitions into the stable P1 region. Frequency detuning Δf = 3.62 GHz, (a) K = −14.8 dB, (b) K = −14.14 dB, (c) K = −10.35 dB, (d) K = −2.1 dB.

Fig. 10
Fig. 10

Sequence of time series (left) and phase portraits (right) showing the orthogonal polarization dynamics as it transitions into the stable P1 region. Frequency detuning Δf = 5.61 GHz, (a) K = −10.42 dB, (b) K = −9.89 dB, (c) K = −8.35 dB, (d) K = −7.85 dB, (e) K = −2.65 dB.

Fig. 11
Fig. 11

(a) Time series of both parallel and orthogonal polarizations at Δf = 0.12 GHz, K = −14.9 dB. (b) Region of the time series showing a pre-pulse oscillation event.

Fig. 12
Fig. 12

Frequency of pre-pulse oscillation in the orthogonal polarization for frequency detuning close to zero and low injection strength.

Fig. 13
Fig. 13

(a) Time series of both parallel and orthogonal polarizations at Δf = −1.62 GHz, K = −9.3 dB. (b) Region of the time series showing multipulse events.

Metrics