Abstract

Two novel methods are proposed which enhance the angular sampling rate of the integral floating display by adopting dynamically variable apertures in front of the lenslet array or the floating lens. Adopted dynamically variable apertures are opened sequentially in synchronization with proper elemental images to subdivide the angular sampling step by time-multiplexing method. Our proposed method can enhance the angular sampling rate, which is related to an expressible longitudinal range, without sacrificing other visual quality factors in tradeoff relationship. Especially, our proposed method with apertures on the floating lens provides two-dimensional/three-dimensional convertible feature to integral floating display system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [CrossRef] [PubMed]
  2. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
    [CrossRef]
  3. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).
  4. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
    [CrossRef] [PubMed]
  5. J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15(20), 13023–13034 (2007).
    [CrossRef] [PubMed]
  6. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. 47(19), D80–D86 (2008).
    [CrossRef] [PubMed]
  7. J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16(12), 8549–8556 (2008).
    [CrossRef] [PubMed]
  8. J. Kim, G. Park, Y. Kim, S.-W. Min, and B. Lee, “Elimination of image discontinuity in integral floating display by using adaptive image mapping,” Appl. Opt. 48(34), H176–H185 (2009).
    [CrossRef] [PubMed]
  9. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  10. F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32(4), 364–366 (2007).
    [CrossRef] [PubMed]
  11. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45(28), 7375–7381 (2006).
    [CrossRef] [PubMed]
  12. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15(24), 16255–16260 (2007).
    [CrossRef] [PubMed]
  13. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), L71–L74 (2005).
    [CrossRef]
  14. F. Jin, J. S. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29(12), 1345–1347 (2004).
    [CrossRef] [PubMed]
  15. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [CrossRef] [PubMed]

2011 (2)

2009 (2)

2008 (2)

2007 (4)

2006 (1)

2005 (2)

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), L71–L74 (2005).
[CrossRef]

2004 (1)

Ando, H.

Arai, J.

Benzie, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Chen, N.

Choi, H.-J.

Hahn, J.

Hahn, M.

Hong, J.

Hong, K.

Hopf, K.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Jang, J. S.

Javidi, B.

Jin, F.

Kashiwada, S.

Kawakita, M.

Kim, E.-S.

Kim, H.

Kim, J.

Kim, Y.

Lee, B.

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[CrossRef] [PubMed]

J. Kim, G. Park, Y. Kim, S.-W. Min, and B. Lee, “Elimination of image discontinuity in integral floating display by using adaptive image mapping,” Appl. Opt. 48(34), H176–H185 (2009).
[CrossRef] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48(34), H77–H94 (2009).
[CrossRef] [PubMed]

J. Kim, S.-W. Min, and B. Lee, “Floated image mapping for integral floating display,” Opt. Express 16(12), 8549–8556 (2008).
[CrossRef] [PubMed]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. 47(19), D80–D86 (2008).
[CrossRef] [PubMed]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15(20), 13023–13034 (2007).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45(28), 7375–7381 (2006).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), L71–L74 (2005).
[CrossRef]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
[CrossRef] [PubMed]

Martinez-Corral, M.

Martínez-Cuenca, R.

Min, S.-W.

Nakamura, K.

Navarro, H.

Okano, F.

Park, G.

Park, J.-H.

Rakkolainen, I.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Saavedra, G.

Sainov, V.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Shin, D.-H.

Surman, P.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Takaki, Y.

Urano, Y.

Urey, H.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

von Kopylow, C.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Watson, J.

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Appl. Opt. (5)

IEEE Trans. Circ. Syst. Video Tech. (1)

P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A survey of 3DTV displays: techniques and technologies,” IEEE Trans. Circ. Syst. Video Tech. 17(11), 1647–1658 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), L71–L74 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (1)

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).

Supplementary Material (2)

» Media 1: AVI (2972 KB)     
» Media 2: AVI (2972 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Display principle of integral floating system. Some crossing points of chief rays, which are considered as available voxels, are illustrated as dots for reference.

Fig. 2
Fig. 2

Condition for avoiding discontinuity in motion parallax perceived by the human visual system. Discontinuity in motion parallax causes the uncertainty in the lateral position of the target voxel. This uncertainty should be smaller than the projected angular resolution of the viewing window to be compared in angular sense.

Fig. 3
Fig. 3

Change in visual qualities of integral floating display according to the increase in angular sampling rate. k: scaling factor to the reference angular sampling rate; RW: resolution of the viewing window; W: size of the viewing window; Δz: expressible longitudinal range calculated with Eqs. (2) or (7). RW and W were normalized by the values at k = 1 while Δz by the value at k = 5.

Fig. 4
Fig. 4

Diagram describing the basic idea of proposed methods.

Fig. 5
Fig. 5

Relationship between the elemental image and dynamically variable aperture for the case of 3 subdivisions in method I. The state of aperture and its corresponding elemental image of the center lenslet are provided as a reference for each phase. 3D objects are two characters ‘3′ and ‘D’ located at different depths.

Fig. 6
Fig. 6

Optical path of rays starting from one lenslet to viewing window via one aperture in the configuration of proposed method II.

Fig. 7
Fig. 7

System configuration of the prototype system implemented for the preliminary experiments.

Fig. 8
Fig. 8

Experimental results of displaying 3D image by the conventional integral floating display technique and the proposed methods I and II. The images have been captured moving around the center of the system. The distance between camera and the system was 1600 mm. (a) The comparison of motion parallax between the conventional method and the proposed method I, and (b) the comparison between the conventional method and the proposed method II.

Fig. 9
Fig. 9

Elemental images used for experiments. (a) Conventional scheme. (b) Phase 1 of proposed method I (Media 1). (c) Phase 1 of proposed method II (Media 2). Other phases of the proposed methods can be found in the movie files.

Fig. 10
Fig. 10

Displayed 2D image with the system configuration of proposed method II.

Fig. 11
Fig. 11

Describing the reason for the crosstalk occurred in the proposed method II.

Tables (1)

Tables Icon

Table 1 Specification of the Prototype

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R I 2 Δ z m tan( Ω 2 )= 1 p ,
Δ z = ( F/ ( GF ) ) 2 φ 2 | L | p w / φ ( h u p w )( p w h l ) ,
Δ v =φ F GF .
Δ z,avg =4 L φ p w .
R θ = 1 Δ θ L φ ,
Δ v z b | DL | < p w ( 1 z b | DL | ), Δ v z f | DL | < p w ( 1+ z f | DL | ),
Δ z = z f + z b < 2 R θ p w 1 ( p w / | DL | ) 2 R θ 2 .
Virtual pinhole: ( m φ + Δ k ,G ), Center of projection plane: ( f( LF ) F( gf ) [ Δ n g G ( qm ) φ g G ],L+G ), Size of projection plane: φ g G f( LF ) F( gf ) .

Metrics