Abstract

Scatter-free phosphors promise to suppress the scattering loss of conventional micro-size powder phosphors in white phosphor-converted light-emitting diodes (pc-LEDs). Large micro-size cube phosphors (~100 μm) are newly designed and prepared as scatter-free phosphors, combining the two scatter-free conditions of particles based on Mie’s scattering theory; the grain size or grain boundary was smaller than 50 nm and the particle size was larger than 30 μm. A careful evaluation of the conversion efficiency and packaging efficiency of the large micro-size cube phosphor-based white pc-LED demonstrated that large micro-size cube phosphors are an outstanding potential candidate for scatter-free phosphors in white pc-LEDs. The luminous efficacy and packaging efficiency of the Y3Al5O12:Ce3+ large micro-size cube phosphor-based pc-LEDs were 123.0 lm/W and 0.87 at 4300 K under 300 mA, which are 17% and 34% higher than those of commercial powder phosphor-based white LEDs (104.8 lm/W and 0.65), respectively. In addition, the introduction of large micro-size cube phosphors can reduce the wide variation in optical properties as a function of both the ambient temperature and applied current compared with those of conventional powder phosphor-based white LEDs.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [CrossRef]
  2. S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
    [CrossRef]
  3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
    [CrossRef]
  4. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
    [CrossRef]
  5. P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
    [CrossRef]
  6. V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
    [CrossRef]
  7. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
    [CrossRef]
  8. K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
    [CrossRef]
  9. L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
    [CrossRef]
  10. S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
    [CrossRef]
  11. S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
    [CrossRef]
  12. S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
    [CrossRef]
  13. H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express 19(25), 25593–25601 (2011).
    [CrossRef] [PubMed]
  14. J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater. 28(6-7), 698–702 (2006).
    [CrossRef]
  15. W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
    [CrossRef]
  16. J. Ryszkowska, “Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+,” Mater. Sci. Eng. B 146(1-3), 54–58 (2008).
    [CrossRef]
  17. M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
    [CrossRef]
  18. R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
    [CrossRef]
  19. B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
    [CrossRef]
  20. Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
    [CrossRef]
  21. H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
    [CrossRef]
  22. S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
    [CrossRef]
  23. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
    [CrossRef]
  24. T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
    [CrossRef]
  25. J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express 20(S1), A1–A12 (2012).
    [CrossRef] [PubMed]

2012 (2)

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[CrossRef]

J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express 20(S1), A1–A12 (2012).
[CrossRef] [PubMed]

2011 (4)

H. K. Park, J. R. Oh, and Y. R. Do, “2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes,” Opt. Express 19(25), 25593–25601 (2011).
[CrossRef] [PubMed]

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[CrossRef]

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

2010 (2)

W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
[CrossRef]

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
[CrossRef]

2009 (4)

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[CrossRef]

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

2008 (2)

J. Ryszkowska, “Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+,” Mater. Sci. Eng. B 146(1-3), 54–58 (2008).
[CrossRef]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[CrossRef]

2007 (1)

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

2006 (1)

J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater. 28(6-7), 698–702 (2006).
[CrossRef]

2005 (3)

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

2003 (1)

K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
[CrossRef]

2002 (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

1997 (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

1995 (2)

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Bachmann, V.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Chao, W.-H.

W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
[CrossRef]

Do, Y. R.

Enoto, T.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Freyssinier-Nova, J. P.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Fujimoto, Y.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

Fujioka, K.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

Fujita, S.

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
[CrossRef]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[CrossRef]

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Gu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Guo, X. Z.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

He, G.

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

Hirakuri, S.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Imai, Y.

K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
[CrossRef]

Ishii, K.

K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
[CrossRef]

Isobe, T.

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Ito, T.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Iwasa, N.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

Kaminskii, A. A.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Kasama, D.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Kasuya, R.

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Katano, J.

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Kawano, A.

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Kim, J. W.

J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater. 28(6-7), 698–702 (2006).
[CrossRef]

Kim, Y. J.

J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater. 28(6-7), 698–702 (2006).
[CrossRef]

Kim, Y.-S.

H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[CrossRef]

Kokubun, M.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Kuma, H.

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Lee, D.-K.

H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[CrossRef]

Li, J.

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

Li, K. K.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Liu, G. K.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Lu, J.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Makishima, K.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Martin, J. E.

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

Mei, L.

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

Meijerink, A.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Mukai, T.

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Nagahama, S.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Narendran, N.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Nishiura, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

Nyman, M.

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

Oh, J. H.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[CrossRef]

J. H. Oh, J. R. Oh, H. K. Park, Y.-G. Sung, and Y. R. Do, “Highly-efficient, tunable green, phosphor-converted LEDs using a long-pass dichroic filter and a series of orthosilicate phosphors for tri-color white LEDs,” Opt. Express 20(S1), A1–A12 (2012).
[CrossRef] [PubMed]

Oh, J. R.

Pan, Y. X.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Park, B. K.

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[CrossRef]

Park, H. K.

Parmentier, A. B.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[CrossRef]

Poelman, D.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[CrossRef]

Provencio, P.

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

Ronda, C.

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

Rosenberg, R. A.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Ryszkowska, J.

J. Ryszkowska, “Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+,” Mater. Sci. Eng. B 146(1-3), 54–58 (2008).
[CrossRef]

Sakamoto, A.

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[CrossRef]

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Sato, M.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Schlotter, P.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Schmidt, R.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Schneider, J.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Senob, M.

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

Senoh, M.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

Shea-Rohwer, L. E.

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

Shigeta, T.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Skanthakumar, S.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Smet, P. F.

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[CrossRef]

Sung, Y.-G.

Takahashi, H.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Tanabe, S.

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
[CrossRef]

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[CrossRef]

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Ueda, K.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Umayahara, Y.

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
[CrossRef]

Wang, L.

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

Wang, W.

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

Wu, R.-J.

W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
[CrossRef]

Wu, T.-B.

W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
[CrossRef]

Xu, L.

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

Yagi, H.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Yamada, K.

K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
[CrossRef]

Yamada, T.

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

Yamamoto, S.

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Yanagida, T.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

Yanagitani, T.

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Yang, H.

H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[CrossRef]

Yoshihara, S.

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Zhu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[CrossRef]

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett. 67(13), 1868–1870 (1995).
[CrossRef]

R. Kasuya, A. Kawano, T. Isobe, H. Kuma, and J. Katano, “Characteristic optical properties of transparent color conversion film prepared from YAG:Ce3+ nanoparticles,” Appl. Phys. Lett. 91, 111916 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[CrossRef]

Chem. Mater. (2)

V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG:Ce,” Chem. Mater. 21(10), 2077–2084 (2009).
[CrossRef]

M. Nyman, L. E. Shea-Rohwer, J. E. Martin, and P. Provencio, “Nano-YAG:Ce mechanisms of growth and epoxy-encapsulation,” Chem. Mater. 21(8), 1536–1542 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Fujita, A. Sakamoto, and S. Tanabe, “Luminescence characteristics of YAG glass-ceramic phosphor for white LED,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2008).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

T. Yanagida, H. Takahashi, T. Ito, D. Kasama, T. Enoto, M. Sato, S. Hirakuri, M. Kokubun, K. Makishima, T. Yanagitani, H. Yagi, T. Shigeta, and T. Ito, “Evaluation of properties of YAG (Ce) ceramic scintillators,” IEEE Trans. Nucl. Sci. 52(5), 1836–1841 (2005).
[CrossRef]

J. Alloy. Comp. (3)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics-a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1-2), 220–225 (2002).
[CrossRef]

Y. X. Pan, W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, and K. K. Li, “Correlation between structure variation and luminescence red shift in YAG:Ce,” J. Alloy. Comp. 488(2), 638–642 (2009).
[CrossRef]

W.-H. Chao, R.-J. Wu, and T.-B. Wu, “Structural and luminescent properties of YAG:Ce thin film phosphor,” J. Alloy. Comp. 506(1), 98–102 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

L. Wang, L. Mei, G. He, J. Li, and L. Xu, “Preparation of Ce:YAG glass-ceramics with low SiO2,” J. Am. Ceram. Soc. 94(11), 3800–3803 (2011).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

S. Fujita, Y. Umayahara, and S. Tanabe, “Influence of light scattering on luminous efficacy in Ce:YAG glass-ceramic phosphor,” J. Ceram. Soc. Jpn. 118(2), 128–131 (2010).
[CrossRef]

J. Electrochem. Soc. (2)

P. F. Smet, A. B. Parmentier, and D. Poelman, “Selecting conversion phosphors for white light-emitting diodes,” J. Electrochem. Soc. 158(6), R37–R54 (2011).
[CrossRef]

B. K. Park, H. K. Park, J. H. Oh, J. R. Oh, and Y. R. Do, “Selecting morphology of Y3Al5O12:Ce3+ phosphors for minimizing scattering loss in the pc-LED package,” J. Electrochem. Soc. 159(4), J96–J106 (2012).
[CrossRef]

J. Light Vis. Environ. (1)

K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light Vis. Environ. 27(2), 70–74 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Senob, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys. 34(Part 2, No. 10B), L1332–L1335 (1995).
[CrossRef]

Mater. Chem. Phys. (1)

H. Yang, D.-K. Lee, and Y.-S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics,” Mater. Chem. Phys. 114(2-3), 665–669 (2009).
[CrossRef]

Mater. Sci. Eng. B (1)

J. Ryszkowska, “Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+,” Mater. Sci. Eng. B 146(1-3), 54–58 (2008).
[CrossRef]

Opt. Express (2)

Opt. Mater. (2)

S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED,” Opt. Mater. 33(5), 688–691 (2011).
[CrossRef]

J. W. Kim and Y. J. Kim, “The effects of substrates and deposition parameters on the growing and luminescent properties of Y3Al5O12:Ce thin films,” Opt. Mater. 28(6-7), 698–702 (2006).
[CrossRef]

Phys. Status Solidi A (1)

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A 202(6), R60–R62 (2005).
[CrossRef]

Proc. SPIE (1)

S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG glass–ceramic phosphors for white LED (I): development,” Proc. SPIE 5941, 594111, 594111-7 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated light scattering coefficient, μs, with YAG:Ce particle size. Inset shows calculated light scattering coefficient with nanoscale size of YAG:Ce particles.

Fig. 2
Fig. 2

Schematic diagram of the fabrication process of the YAG:Ce large micro-size cube phosphors.

Fig. 3
Fig. 3

(a) Low magnification, top view FE-SEM image, (b) Top view fluorescent image, and (c) Two dimensional AFM image of YAG:Ce large micro-size cube phosphors. (d) Low- and high-magnification FE-SEM images of conventional YAG:Ce micro-size powder phosphors. (e) XRD patterns of YAG:Ce powder phosphors and large micro-size cube phosphors. (f) Optical transmittance spectra of a YAG:Ce ceramic plate phosphor. (g) Transmittance spectra of white light (in the wavelength region of 550 to 750nm) through YAG:Ce powder phosphor and large micro-size cube phosphor thick film (h) Measured light scattering coefficients and transmittance at yellow light (about 557nm) of both a conventional powder phosphors and a large micro-size cube phosphors as function of the phosphor concentration in the paste.

Fig. 4
Fig. 4

Schematic diagrams of (a) a YAG:Ce conventional powder phosphor-based and (b) a large micro-size cube-based LED device structure. (c) Luminous efficacy (lm/W), (d) Conversion efficiency, (e) Packaging efficiency, and (f) Correlated color temperature (CCT) of both a conventional powder-based and a large micro-size cube-based LED as a function of the phosphor concentration in the paste.

Fig. 5
Fig. 5

Schematic diagrams of the light paths within silicone binder (paste) in LED package (a) without and (b) with the large micro-size cube phosphors.

Fig. 6
Fig. 6

Excitation and emission spectra of a YAG:Ce conventional powder phosphor and a large micro-size cube phosphor.

Fig. 7
Fig. 7

(a) Blue-conversion-white electroluminescent (EL) emission spectra of a conventional powder-based (with powder concentration of 25 wt%) and a large micro-size cube-based (with powder concentration of 50 wt%) LED at 4300K in an equal-current condition (300 mA). (b) Luminous flux (lm), (c), (e) Luminous efficacies (lm/W) and (d), (f) Color coordinates of the conventional powder phosphor-based (with powder concentration of 25 wt%) and the large micro-size cube-based LED (with powder concentration of 50 wt%) as a function of the applied current and the ambient temperature. Insets in (c), (e) show relative luminous efficacies of the conventional powder-based (25 wt%) and the large micro-size cube-based LED (50 wt%) as a function of the applied current and the ambient temperature.

Fig. 8
Fig. 8

(a) The relative lumens and (b) normalized luminous efficacy as a function of the viewing angle for a conventional powder-based LED and a large micro-size cube-based LED taken under identical excitation conditions (current at 300 mA).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

μ = - logT d

Metrics